Broad-Specificity mRNA-rRNA Complementarity in Efficient Protein Translation

被引:14
作者
Barendt, Pamela A. [1 ]
Shah, Najaf A. [2 ]
Barendt, Gregory A. [3 ]
Sarkar, Casim A. [1 ,2 ,4 ]
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Penn, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med Informat Serv, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
INITIATION CODON; BINDING-SITES; SEQUENCES; SELECTION; REGION; DISPLAY; SYSTEM; INHIBITION; EXPRESSION; MECHANISM;
D O I
10.1371/journal.pgen.1002598
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Studies of synthetic, well-defined biomolecular systems can elucidate inherent capabilities that may be difficult to uncover in a native biological context. Here, we used a minimal, reconstituted translation system from Escherichia coli to identify efficient ribosome binding sites (RBSs) in an unbiased, high-throughput manner. We applied ribosome display, a powerful in vitro selection method, to enrich only those mRNA sequences which could direct rapid protein translation. In addition to canonical Shine-Dalgarno (SD) motifs, we unexpectedly recovered highly efficient cytosine-rich (C-rich) sequences that exhibit unmistakable complementarity to the 16S rRNA of the small subunit of the ribosome, indicating that broad-specificity base-pairing may be an inherent, general mechanism for efficient translation. Furthermore, given the conservation of ribosomal structure and function across species, the broader relevance of C-rich RBS sequences identified through our in vitro evolution approach is supported by multiple, diverse examples in nature, including C-rich RBSs in several bacteriophage and plants, a poly-C consensus before the start codon in a lower eukaryote, and Kozak-like sequences in vertebrates.
引用
收藏
页数:13
相关论文
共 52 条
[1]   ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs [J].
Akbergenov, RZ ;
Zhanybekova, SS ;
Kryldakov, RV ;
Zhigailov, A ;
Polimbetova, NS ;
Hohn, T ;
Iskakov, BK .
NUCLEIC ACIDS RESEARCH, 2004, 32 (01) :239-247
[2]   Environmentally controlled invasion of cancer cells by engineered bacteria [J].
Anderson, JC ;
Clarke, EJ ;
Arkin, AP ;
Voigt, CA .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 355 (04) :619-627
[3]  
Barendt P.A., 2009, Protein Engineering and Design, V75, P51
[4]   High-affinity binders selected from designed ankyrin repeat protein libraries [J].
Binz, HK ;
Amstutz, P ;
Kohl, A ;
Stumpp, MT ;
Briand, C ;
Forrer, P ;
Grütter, MG ;
Plückthun, A .
NATURE BIOTECHNOLOGY, 2004, 22 (05) :575-582
[5]   Structural basis for hygromycin B inhibition of protein biosynthesis [J].
Borovinskaya, Maria A. ;
Shoji, Shinichiro ;
Fredrick, Kurt ;
Cate, Jamie H. D. .
RNA, 2008, 14 (08) :1590-1599
[6]   Tracking, tuning, and terminating microbial physiology using synthetic riboregulators [J].
Callura, Jarred M. ;
Dwyer, Daniel J. ;
Isaacs, Farren J. ;
Cantor, Charles R. ;
Collins, James J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (36) :15898-15903
[7]   EUKARYOTIC START AND STOP TRANSLATION SITES [J].
CAVENER, DR ;
RAY, SC .
NUCLEIC ACIDS RESEARCH, 1991, 19 (12) :3185-3192
[8]   Analysis of SD sequences in completed microbial genomes: Non-SD-led genes are as common as SD-led genes [J].
Chang, Bill ;
Halgamuge, Saman ;
Tang, Sen-Lin .
GENE, 2006, 373 :90-99
[9]   Ribosomal tethering and clustering as mechanisms for translation initiation [J].
Chappell, Stephen A. ;
Edelman, Gerald M. ;
Mauro, Vincent P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (48) :18077-18082
[10]   DETERMINATION OF THE OPTIMAL ALIGNED SPACING BETWEEN THE SHINE-DALGARNO SEQUENCE AND THE TRANSLATION INITIATION CODON OF ESCHERICHIA-COLI MESSENGER-RNAS [J].
CHEN, HY ;
BJERKNES, M ;
KUMAR, R ;
JAY, E .
NUCLEIC ACIDS RESEARCH, 1994, 22 (23) :4953-4957