Molecular sieve carbons for CO2 capture

被引:61
|
作者
Carruthers, J. Donald [1 ]
Petruska, Melissa A. [1 ]
Sturm, Edward A. [1 ]
Wilson, Shaun M. [1 ]
机构
[1] ATMI, Danbury, CT 06810 USA
关键词
Molecular-sieve carbon; CO2; Access-pore size; PSA/TSA; METAL-ORGANIC FRAMEWORKS; ADSORPTION; DIOXIDE; STORAGE; GASES; CH4;
D O I
10.1016/j.micromeso.2011.07.016
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
With the current interest in controlling greenhouse gases, there is a new focus on materials that can discriminate between gas molecules by capturing those gases which must be curtailed and releasing those which pose no adverse effects to the atmosphere. Although zeolites can be applied to such tasks, molecular sieve (MS) carbons have an additional advantage in their ability to both adsorb and desorb molecules cyclically with comparatively little energy demand. This paper describes studies of commercial ATMI carbons obtained from polyvinylidene chloride pyrolysis that have experienced different levels of activation and additives to modify the sizes of pore 'portals' (i.e., those pores which orchestrate movement of molecules from the gas phase into the inner structure of the carbon). The structures are probed using molecules in the 0.3-0.68 nm size range. One significant feature of these materials is that total pore volume for smaller molecules is maintained during the 'tailoring' of the portal pore size. These carbons have additional benefits such as high strength and high density, becoming ideal candidates for capturing CO2. Data for select carbons indicate capacities at ambient conditions for CO2 of >140 v/v (similar to 20 wt.%) and, in simulated power plant exhaust, Henry's Law Separation Factors >6. Through collaboration with SRI International, ATMI has developed carbons that exhibit >97% capture of CO2 in such streams with subsequent desorption of 98% purity CO2 in the stripper section of a pilot-scale unit. In this application, these carbons outperform the claims made for MOFs and other similar materials. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:62 / 67
页数:6
相关论文
共 50 条
  • [31] Investigation of CO2 Capture from a CO2 + CH4 Gas Mixture by Gas Hydrate Formation in the Fixed Bed of a Molecular Sieve
    Zhong, Dong-Liang
    Li, Zheng
    Lu, Yi-Yu
    Wang, Jia-Le
    Yan, Jin
    Qing, Sheng-Lan
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (29) : 7973 - 7980
  • [32] Rational design of β-cyclodextrins-derived hierarchically porous carbons for CO2 capture: The roles of surface chemistry and porosity on CO2 capture
    Zhang, Yaofei
    Shi, Weiwei
    Zhang, Shouren
    Zhao, Shuang
    Yang, Baocheng
    Chang, Binbin
    JOURNAL OF CO2 UTILIZATION, 2022, 66
  • [33] CO2 Adsorption Behaviors of Biomass-Based Activated Carbons Prepared by a Microwave/Steam Activation Technique for Molecular Sieve
    Lee, Jin-Young
    Lee, Byeong-Hoon
    Chung, Dong-Chul
    Kim, Byung-Joo
    MATERIALS, 2023, 16 (16)
  • [34] Activated three-dimensionally ordered micromesoporous carbons for CO2 capture
    Vorokhta, M.
    Novakova, J.
    Dopita, M.
    Khalakhan, I.
    Kopecky, V.
    Svabova, M.
    MATERIALS TODAY SUSTAINABILITY, 2023, 24
  • [35] Activated carbons-preparation, characterization and their application in CO2 capture: A review
    Serafin, Jaroslaw
    Dziejarski, Bartosz
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 31 (28) : 40008 - 40062
  • [36] Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture
    Tiwari, Deepak
    Goel, Chitrakshi
    Bhunia, Haripada
    Bajpai, Pramod K.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2017, 197 : 415 - 427
  • [37] Efficient CO2 Capture by Porous Carbons Derived from Coconut Shell
    Yang, Jie
    Yue, Limin
    Hu, Xin
    Wang, Linlin
    Zhao, Yongle
    Lin, Youyou
    Sun, Yan
    DaCosta, Herbert
    Guo, Liping
    ENERGY & FUELS, 2017, 31 (04) : 4287 - 4293
  • [38] Activated carbons from common nettle as potential adsorbents for CO2 capture
    Szymanska, Alicja
    Skoczek, Amelia
    Przepiorski, Jacek
    POLISH JOURNAL OF CHEMICAL TECHNOLOGY, 2019, 21 (01) : 59 - 66
  • [39] Hydroxybenzoic acid derived porous carbons for low pressure CO2 capture
    Zaman, Ali Can
    JOURNAL OF SOLID STATE CHEMISTRY, 2023, 327
  • [40] Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites
    Lu, Chungsying
    Bai, Hsunling
    Wu, Bilen
    Su, Fengsheng
    Fen-Hwang, Jyh
    ENERGY & FUELS, 2008, 22 (05) : 3050 - 3056