An end-to-end approach to segmentation in medical images with CNN and posterior-CRF

被引:32
作者
Chen, Shuai [1 ]
Gamechi, Zahra Sedghi [1 ]
Dubost, Florian [1 ]
van Tulder, Gijs [1 ]
de Bruijne, Marleen [1 ,2 ]
机构
[1] Erasmus MC, Dept Radiol & Nucl Med, Biomed Imaging Grp Rotterdam, Rotterdam, Netherlands
[2] Univ Copenhagen, Dept Comp Sci, Machine Learning Sect, Copenhagen, Denmark
关键词
Segmentation; CNN; CRF; Graph model; Medical images; STROKE LESION SEGMENTATION; NETWORK;
D O I
10.1016/j.media.2021.102311
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conditional Random Fields (CRFs) are often used to improve the output of an initial segmentation model, such as a convolutional neural network (CNN). Conventional CRF approaches in medical imaging use manually defined features, such as intensity to improve appearance similarity or location to improve spatial coherence. These features work well for some tasks, but can fail for others. For example, in medical image segmentation applications where different anatomical structures can have similar intensity values, an intensity-based CRF may produce incorrect results. As an alternative, we propose Posterior-CRF , an endto-end segmentation method that uses CNN-learned features in a CRF and optimizes the CRF and CNN parameters concurrently. We validate our method on three medical image segmentation tasks: aorta and pulmonary artery segmentation in non-contrast CT, white matter hyperintensities segmentation in multimodal MRI, and ischemic stroke lesion segmentation in multi-modal MRI. We compare this with the state-of-the-art CNN-CRF methods. In all applications, our proposed method outperforms the existing methods in terms of Dice coefficient, average volume difference, and lesion-wise F1 score. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:12
相关论文
共 35 条
[1]   Fast High-Dimensional Filtering Using the Permutohedral Lattice [J].
Adams, Andrew ;
Baek, Jongmin ;
Davis, Myers Abraham .
COMPUTER GRAPHICS FORUM, 2010, 29 (02) :753-762
[2]  
[Anonymous], 2014, ARXIV PREPRINT ARXIV
[3]  
Bakas S., 2018, ARXIV PREPRINT ARXIV
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]  
Chen S., 2018, MED IM MEETS NEUR WO
[6]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[7]   3D deeply supervised network for automated segmentation of volumetric medical images [J].
Dou, Qi ;
Yu, Lequan ;
Chen, Hao ;
Jin, Yueming ;
Yang, Xin ;
Qin, Jing ;
Heng, Pheng-Ann .
MEDICAL IMAGE ANALYSIS, 2017, 41 :40-54
[8]   Aorta and Pulmonary Artery Segmentation Using Optimal Surface Graph Cuts in Non-contrast CT [J].
Gamechi, Zahra Sedghi ;
Arias-Lorza, Andres M. ;
Pedersen, Jesper Hoist ;
de Bruijne, Marleen .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+