Unique Role of Refractory Ta Alloying in Enhancing the Figure of Merit of NbFeSb Thermoelectric Materials

被引:219
作者
Yu, Junjie [1 ,2 ]
Fu, Chenguang [1 ,2 ]
Liu, Yintu [1 ,2 ]
Xia, Kaiyang [1 ,2 ]
Aydemir, Umut [3 ]
Chasapis, Thomas C. [3 ]
Snyder, G. Jeffrey [3 ]
Zhao, Xinbing [1 ,2 ]
Zhu, Tiejun [1 ,2 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
关键词
half-Heusler compounds; solid solutions; thermal conductivity; thermoelectric materials; HALF-HEUSLER COMPOUNDS; LATTICE THERMAL-CONDUCTIVITY; PHONON-SCATTERING; ELECTRON-MOBILITY; PERFORMANCE; TRANSPORT; CONVERGENCE; ENHANCEMENT; PURE; PBTE;
D O I
10.1002/aenm.201701313
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NbFeSb-based half-Heusler alloys have been recently identified as promising high-temperature thermoelectric materials with a figure of merit zT > 1, but their thermal conductivity is still relatively high. Alloying Ta at the Nb site would be highly desirable because the large mass fluctuation between them could effectively scatter phonons and reduce the lattice thermal conductivity. However, practically it is a great challenge due to the high melting point of refractory Ta. Here, the successful synthesis of Ta-alloyed (Nb1-xTax)(0.8)Ti0.2FeSb (x = 0 - 0.4) solid solutions with significantly reduced thermal conductivity by levitation melting is reported. Because of the similar atomic sizes and chemistry of Nb and Ta, the solid solutions exhibit almost unaltered electrical properties. As a result, an overall zT enhancement from 300 to 1200 K is realized in the single-phase Ta-alloyed solid solutions, and the compounds with x = 0.36 and 0.4 reach a maximum zT of 1.6 at 1200 K. This work also highlights that the isoelectronic substitution by atoms with similar size and chemical nature but large mass difference should reduce the lattice thermal conductivity but maintain good electrical properties in thermoelectric materials, which can be a guide for optimizing the figure of merit by alloying.
引用
收藏
页数:8
相关论文
共 60 条
[1]   LATTICE THERMAL CONDUCTIVITY OF DISORDERED SEMICONDUCTOR ALLOYS AT HIGH TEMPERATURES [J].
ABELES, B .
PHYSICAL REVIEW, 1963, 131 (05) :1906-&
[2]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[3]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140
[4]   EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY [J].
CALLAWAY, J ;
VONBAEYER, HC .
PHYSICAL REVIEW, 1960, 120 (04) :1149-1154
[5]   Recent progress of half-Heusler for moderate temperature thermoelectric applications [J].
Chen, Shuo ;
Ren, Zhifeng .
MATERIALS TODAY, 2013, 16 (10) :387-395
[6]   Effect of Hf Concentration on Thermoelectric Properties of Nanostructured N-Type Half-Heusler Materials HfxZr1-xNiSn0.99Sb0.01 [J].
Chen, Shuo ;
Lukas, Kevin C. ;
Liu, Weishu ;
Opeil, Cyril P. ;
Chen, Gang ;
Ren, Zhifeng .
ADVANCED ENERGY MATERIALS, 2013, 3 (09) :1210-1214
[7]   ELECTRON-MOBILITY IN INAS1-XSBX AND THE EFFECT OF ALLOY SCATTERING [J].
CHIN, VWL ;
EGAN, RJ ;
TANSLEY, TL .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (06) :3571-3577
[8]   (Zr,Hf)Co(Sb,Sn) half-Heusler phases as high-temperature (>700 °C) p-type thermoelectric materials [J].
Culp, Slade R. ;
Simonson, J. W. ;
Poon, S. Joseph ;
Ponnambalam, V. ;
Edwards, J. ;
Tritt, Terry M. .
APPLIED PHYSICS LETTERS, 2008, 93 (02)
[9]   Phonon density of states and heat capacity of La3-xTe4 [J].
Delaire, O. ;
May, A. F. ;
McGuire, M. A. ;
Porter, W. D. ;
Lucas, M. S. ;
Stone, M. B. ;
Abernathy, D. L. ;
Ravi, V. A. ;
Firdosy, S. A. ;
Snyder, G. J. .
PHYSICAL REVIEW B, 2009, 80 (18)
[10]   Computational prediction of high thermoelectric performance in p-type half-Heusler compounds with low band effective mass [J].
Fang, Teng ;
Zheng, Shuqi ;
Zhou, Tian ;
Yan, Lei ;
Zhang, Peng .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (06) :4411-4417