Automated Assessment of Pain Intensity based on EEG Signal Analysis

被引:10
作者
Bonotis, Panagiotis A. [1 ]
Tsouros, Dimosthenis C. [1 ]
Smyrlis, Panagiotis N. [1 ]
Tzallas, Alexandros T. [2 ]
Giannakeas, Nikolaos [2 ]
Glavas, Evripidis [2 ]
Tsipouras, Markos G. [3 ,4 ]
机构
[1] Univ Western Macedonia, Dept Elect & Comp Engn, Kozani, Greece
[2] Univ Ioannina, Dept Informat & Telecommun, Arta, Greece
[3] UNIVEYE IKE, Sci & Technol Pk Epirus, Ioannina, Greece
[4] Univ Western Macedonia, Dept Elect & Comp Engn, Kozani, Greece
来源
2019 IEEE 19TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE) | 2019年
关键词
Electroencephalogram (EEG); Portable EEG; Pain Intensity; Automated Assessment; Stochastic Forest Classifier; PERCEPTION; COLD;
D O I
10.1109/BIBE.2019.00111
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective characterization of pain intensity is necessary under certain clinical conditions. The portable electroencephalogram (EEG) is a cost-effective assessment tool and lately, new methods using efficient analysis of related dynamic changes in brain activity in the EEG recordings proved that these can reflect the dynamic changes of pain intensity. In this paper, a novel method for automated assessment of pain intensity using EEG data is presented. EEG recordings from twenty-two (22) healthy volunteers are recorded with the Emotiv EPOC+ using the Cold Pressor Test (CPT) protocol. The relative power of each brain band's energy for each channel is extracted and the stochastic forest algorithm is employed for discrimination across five classes, depicting the pain intensity. Obtained results in terms of classification accuracy reached high levels (72.7%), which renders the proposed method suitable for automated pain detection and quantification of its intensity.
引用
收藏
页码:583 / 588
页数:6
相关论文
共 25 条
[1]  
[Anonymous], C4 5 PROGRAMMING MAC
[2]   The effect of experimenter gender on autonomic and subjective responses to pain stimuli [J].
Aslaksen, Per M. ;
Myrbakk, Ingvild N. ;
Hoifodt, Ragnbild S. ;
Flaten, Magne A. .
PAIN, 2007, 129 (03) :260-268
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Topology of EEG coherence changes may reflect differential neural network activation in cold and pain perception [J].
Chen, ACN ;
Rappelsberger, P ;
Filz, O .
BRAIN TOPOGRAPHY, 1998, 11 (02) :125-132
[5]  
Chen Andrew C. N., 1994, Brain Topography, V7, P129, DOI 10.1007/BF01186771
[6]   Effects of oral morphine on cold pressor tolerance time and neuropsychological performance [J].
Cleeland, CS ;
Nakamura, Y ;
Howland, EW ;
Morgan, NR ;
Edwards, KR ;
Backonja, M .
NEUROPSYCHOPHARMACOLOGY, 1996, 15 (03) :252-262
[7]   Dynamic spectral indices of the electroencephalogram provide new insights into tonic pain [J].
Gram, M. ;
Graversen, C. ;
Olesen, S. S. ;
Drewes, A. M. .
CLINICAL NEUROPHYSIOLOGY, 2015, 126 (04) :763-771
[8]  
Gram M., 2012, INT PHARMACO EEG SOC
[9]   EEG-Based Tonic Cold Pain Characterization Using Wavelet Higher Order Spectral Features [J].
Hadjileontiadis, Leontios J. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (08) :1981-1991
[10]  
Haykin S., 1994, Neural networks: A comprehensive foundation