Universal behavior of cascading failures in interdependent networks

被引:84
作者
Duan, Dongli [1 ,2 ]
Lv, Changchun [1 ]
Si, Shubin [1 ]
Wang, Zhen [1 ,3 ]
Li, Daqing [4 ]
Gao, Jianxi [5 ,6 ]
Havlin, Shlomo [7 ]
Stanley, H. Eugene [8 ]
Boccaletti, Stefano [9 ,10 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Shaanxi, Peoples R China
[2] Xian Univ Architecture & Technol, Sch Informat & Control Engn, Xian 710311, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Ctr OpT IMagery Anal & Learning, Xian 710072, Shaanxi, Peoples R China
[4] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
[5] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[6] Rensselaer Polytech Inst, Network Sci & Technol Ctr, Troy, NY 12180 USA
[7] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[8] Boston Univ, Ctr Polymer Studies, Dept Phys, Boston, MA 02215 USA
[9] CNR, Inst Complex Syst, I-50019 Florence, Italy
[10] Northwestern Polytech Univ, Unmanned Syst Res Inst, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 以色列科学基金会;
关键词
cascading failure; interdependent network; spreading; robustness; PERCOLATION; RESILIENCE; DYNAMICS;
D O I
10.1073/pnas.1904421116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Catastrophic and major disasters in real-world systems, such as blackouts in power grids or global failures in critical infrastructures, are often triggered by minor events which originate a cascading failure in interdependent graphs. We present here a self-consistent theory enabling the systematic analysis of cascading failures in such networks and encompassing a broad range of dynamical systems, from epidemic spreading, to birth-death processes, to biochemical and regulatory dynamics. We offer testable predictions on breakdown scenarios, and, in particular, we unveil the conditions under which the percolation transition is of the first-order or the second-order type, as well as prove that accounting for dynamics in the nodes always accelerates the cascading process. Besides applying directly to relevant real-world situations, our results give practical hints on how to engineer more robust networked systems.
引用
收藏
页码:22452 / 22457
页数:6
相关论文
共 51 条
[1]   Tricritical Point in Explosive Percolation [J].
Araujo, Nuno A. M. ;
Andrade, Jose S., Jr. ;
Ziff, Robert M. ;
Herrmann, Hans J. .
PHYSICAL REVIEW LETTERS, 2011, 106 (09)
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]  
Barrat A., 2008, Dynamical Processes on Complex Networks, Vfirst
[4]  
Barzel B, 2013, NAT PHYS, V9, P673, DOI [10.1038/NPHYS2741, 10.1038/nphys2741]
[5]   Avalanche Collapse of Interdependent Networks [J].
Baxter, G. J. ;
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
PHYSICAL REVIEW LETTERS, 2012, 109 (24)
[6]   Statistical mechanics of multiplex networks: Entropy and overlap [J].
Bianconi, Ginestra .
PHYSICAL REVIEW E, 2013, 87 (06)
[7]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[8]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122
[9]   Suppressing cascades of load in interdependent networks [J].
Brummitt, Charles D. ;
D'Souza, Raissa M. ;
Leicht, E. A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (12) :E680-E689
[10]   Catastrophic cascade of failures in interdependent networks [J].
Buldyrev, Sergey V. ;
Parshani, Roni ;
Paul, Gerald ;
Stanley, H. Eugene ;
Havlin, Shlomo .
NATURE, 2010, 464 (7291) :1025-1028