Machine learning-integrated omics for the risk and safety assessment of nanomaterials

被引:61
作者
Ahmad, Farooq [1 ]
Mahmood, Asif [2 ]
Muhmood, Tahir [3 ]
机构
[1] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing Natl Lab Microstruct, Coll Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
[2] Beijing Inst Technol, Belling Key Lab Photoelect Electrophoton Convers, Sch Chem & Chem Engn, Beijing 100081, Peoples R China
[3] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
RECURRENT NEURAL-NETWORK; GENE-EXPRESSION PATTERNS; ADVERSE DRUG-REACTIONS; SOCIAL MEDIA; COMPUTATIONAL METHODS; TOXICITY; PHARMACOVIGILANCE; PREDICTION; GENOME; HEALTH;
D O I
10.1039/d0bm01672a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
With the advancement in nanotechnology, we are experiencing transformation in world order with deep insemination of nanoproducts from basic necessities to advanced electronics, health care products and medicines. Therefore, nanoproducts, however, can have negative side effects and must be strictly monitored to avoid negative outcomes. Future toxicity and safety challenges regarding nanomaterial incorporation into consumer products, including rapid addition of nanomaterials with diverse functionalities and attributes, highlight the limitations of traditional safety evaluation tools. Currently, artificial intelligence and machine learning algorithms are envisioned for enhancing and improving the nano-bio-interaction simulation and modeling, and they extend to the post-marketing surveillance of nanomaterials in the real world. Thus, hyphenation of machine learning with biology and nanomaterials could provide exclusive insights into the perturbations of delicate biological functions after integration with nanomaterials. In this review, we discuss the potential of combining integrative omics with machine learning in profiling nanomaterial safety and risk assessment and provide guidance for regulatory authorities as well.
引用
收藏
页码:1598 / 1608
页数:11
相关论文
共 109 条
  • [1] NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment
    Afantitis, Antreas
    Melagraki, Georgia
    Isigonis, Panagiotis
    Tsoumanis, Andreas
    Varsou, Dimitra Danai
    Valsami-Jones, Eugenia
    Papadiamantis, Anastasios
    Ellis, Laura-Jayne A.
    Sarimveis, Haralambos
    Doganis, Philip
    Karatzas, Pantelis
    Tsiros, Periklis
    Liampa, Irene
    Lobaskin, Vladimir
    Greco, Dario
    Serra, Angela
    Kinaret, Pia Anneli Sofia
    Saarimaki, Laura Aliisa
    Grafstrom, Roland
    Kohonen, Pekka
    Nymark, Penny
    Willighagen, Egon
    Puzyn, Tomasz
    Rybinska-Fryca, Anna
    Lyubartsev, Alexander
    Jensen, Keld Alstrup
    Brandenburg, Jan Gerit
    Lofts, Stephen
    Svendsen, Claus
    Harrison, Samuel
    Maier, Dieter
    Tamm, Kaido
    Janes, Jaak
    Sikk, Lauri
    Dusinska, Maria
    Longhin, Eleonora
    Runden-Pran, Elise
    Mariussen, Espen
    El Yamani, Naouale
    Unger, Wolfgang
    Radnik, Joerg
    Tropsha, Alexander
    Cohen, Yoram
    Leszczynski, Jerzy
    Hendren, Christine Ogilvie
    Wiesner, Mark
    Winkler, David
    Suzuki, Noriyuki
    Yoon, Tae Hyun
    Choi, Jang-Sik
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 583 - 602
  • [2] High-dimensional QSAR prediction of anticancer potency of imidazo[4,5-b]pyridine derivatives using adjusted adaptive LASSO
    Algamal, Zakariya Yahya
    Lee, Muhammad Hisyam
    Al-Fakih, Abdo M.
    Aziz, Madzlan
    [J]. JOURNAL OF CHEMOMETRICS, 2015, 29 (10) : 547 - 556
  • [3] Neural network activation similarity: a new measure to assist decision making in chemical toxicology
    Allen, Timothy E. H.
    Wedlake, Andrew J.
    Gelzinyte, Elena
    Gong, Charles
    Goodman, Jonathan M.
    Gutsell, Steve
    Russell, Paul J.
    [J]. CHEMICAL SCIENCE, 2020, 11 (28) : 7335 - 7348
  • [4] ADVERSE OUTCOME PATHWAYS: A CONCEPTUAL FRAMEWORK TO SUPPORT ECOTOXICOLOGY RESEARCH AND RISK ASSESSMENT
    Ankley, Gerald T.
    Bennett, Richard S.
    Erickson, Russell J.
    Hoff, Dale J.
    Hornung, Michael W.
    Johnson, Rodney D.
    Mount, David R.
    Nichols, John W.
    Russom, Christine L.
    Schmieder, Patricia K.
    Serrrano, Jose A.
    Tietge, Joseph E.
    Villeneuve, Daniel L.
    [J]. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2010, 29 (03) : 730 - 741
  • [5] [Anonymous], 2013, COMPUTER SCI
  • [6] [Anonymous], 2014, NIPS
  • [7] Omics of Blood Pressure and Hypertension
    Arnett, Donna K.
    Claas, Steven A.
    [J]. CIRCULATION RESEARCH, 2018, 122 (10) : 1409 - 1419
  • [8] Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles
    Ban, Zhan
    Yuan, Peng
    Yu, Fubo
    Peng, Ting
    Zhou, Qixing
    Hu, Xiangang
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (19) : 10492 - 10499
  • [9] A multi-omics approach reveals mechanisms of nanomaterial toxicity and structure-activity relationships in alveolar macrophages
    Bannuscher, Anne
    Karkossa, Isabel
    Buhs, Sophia
    Nollau, Peter
    Kettler, Katja
    Balas, Mihaela
    Dinischiotu, Anca
    Hellack, Bryan
    Wiemann, Martin
    Luch, Andreas
    von Bergen, Martin
    Haase, Andrea
    Schubert, Kristin
    [J]. NANOTOXICOLOGY, 2020, 14 (02) : 181 - 195
  • [10] NCBI GEO: archive for functional genomics data sets-update
    Barrett, Tanya
    Wilhite, Stephen E.
    Ledoux, Pierre
    Evangelista, Carlos
    Kim, Irene F.
    Tomashevsky, Maxim
    Marshall, Kimberly A.
    Phillippy, Katherine H.
    Sherman, Patti M.
    Holko, Michelle
    Yefanov, Andrey
    Lee, Hyeseung
    Zhang, Naigong
    Robertson, Cynthia L.
    Serova, Nadezhda
    Davis, Sean
    Soboleva, Alexandra
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D991 - D995