Machine learning-integrated omics for the risk and safety assessment of nanomaterials

被引:63
作者
Ahmad, Farooq [1 ]
Mahmood, Asif [2 ]
Muhmood, Tahir [3 ]
机构
[1] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing Natl Lab Microstruct, Coll Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
[2] Beijing Inst Technol, Belling Key Lab Photoelect Electrophoton Convers, Sch Chem & Chem Engn, Beijing 100081, Peoples R China
[3] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
RECURRENT NEURAL-NETWORK; GENE-EXPRESSION PATTERNS; ADVERSE DRUG-REACTIONS; SOCIAL MEDIA; COMPUTATIONAL METHODS; TOXICITY; PHARMACOVIGILANCE; PREDICTION; GENOME; HEALTH;
D O I
10.1039/d0bm01672a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
With the advancement in nanotechnology, we are experiencing transformation in world order with deep insemination of nanoproducts from basic necessities to advanced electronics, health care products and medicines. Therefore, nanoproducts, however, can have negative side effects and must be strictly monitored to avoid negative outcomes. Future toxicity and safety challenges regarding nanomaterial incorporation into consumer products, including rapid addition of nanomaterials with diverse functionalities and attributes, highlight the limitations of traditional safety evaluation tools. Currently, artificial intelligence and machine learning algorithms are envisioned for enhancing and improving the nano-bio-interaction simulation and modeling, and they extend to the post-marketing surveillance of nanomaterials in the real world. Thus, hyphenation of machine learning with biology and nanomaterials could provide exclusive insights into the perturbations of delicate biological functions after integration with nanomaterials. In this review, we discuss the potential of combining integrative omics with machine learning in profiling nanomaterial safety and risk assessment and provide guidance for regulatory authorities as well.
引用
收藏
页码:1598 / 1608
页数:11
相关论文
共 109 条
[1]   NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment [J].
Afantitis, Antreas ;
Melagraki, Georgia ;
Isigonis, Panagiotis ;
Tsoumanis, Andreas ;
Varsou, Dimitra Danai ;
Valsami-Jones, Eugenia ;
Papadiamantis, Anastasios ;
Ellis, Laura-Jayne A. ;
Sarimveis, Haralambos ;
Doganis, Philip ;
Karatzas, Pantelis ;
Tsiros, Periklis ;
Liampa, Irene ;
Lobaskin, Vladimir ;
Greco, Dario ;
Serra, Angela ;
Kinaret, Pia Anneli Sofia ;
Saarimaki, Laura Aliisa ;
Grafstrom, Roland ;
Kohonen, Pekka ;
Nymark, Penny ;
Willighagen, Egon ;
Puzyn, Tomasz ;
Rybinska-Fryca, Anna ;
Lyubartsev, Alexander ;
Jensen, Keld Alstrup ;
Brandenburg, Jan Gerit ;
Lofts, Stephen ;
Svendsen, Claus ;
Harrison, Samuel ;
Maier, Dieter ;
Tamm, Kaido ;
Janes, Jaak ;
Sikk, Lauri ;
Dusinska, Maria ;
Longhin, Eleonora ;
Runden-Pran, Elise ;
Mariussen, Espen ;
El Yamani, Naouale ;
Unger, Wolfgang ;
Radnik, Joerg ;
Tropsha, Alexander ;
Cohen, Yoram ;
Leszczynski, Jerzy ;
Hendren, Christine Ogilvie ;
Wiesner, Mark ;
Winkler, David ;
Suzuki, Noriyuki ;
Yoon, Tae Hyun ;
Choi, Jang-Sik .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 :583-602
[2]   High-dimensional QSAR prediction of anticancer potency of imidazo[4,5-b]pyridine derivatives using adjusted adaptive LASSO [J].
Algamal, Zakariya Yahya ;
Lee, Muhammad Hisyam ;
Al-Fakih, Abdo M. ;
Aziz, Madzlan .
JOURNAL OF CHEMOMETRICS, 2015, 29 (10) :547-556
[3]   Neural network activation similarity: a new measure to assist decision making in chemical toxicology [J].
Allen, Timothy E. H. ;
Wedlake, Andrew J. ;
Gelzinyte, Elena ;
Gong, Charles ;
Goodman, Jonathan M. ;
Gutsell, Steve ;
Russell, Paul J. .
CHEMICAL SCIENCE, 2020, 11 (28) :7335-7348
[4]   ADVERSE OUTCOME PATHWAYS: A CONCEPTUAL FRAMEWORK TO SUPPORT ECOTOXICOLOGY RESEARCH AND RISK ASSESSMENT [J].
Ankley, Gerald T. ;
Bennett, Richard S. ;
Erickson, Russell J. ;
Hoff, Dale J. ;
Hornung, Michael W. ;
Johnson, Rodney D. ;
Mount, David R. ;
Nichols, John W. ;
Russom, Christine L. ;
Schmieder, Patricia K. ;
Serrrano, Jose A. ;
Tietge, Joseph E. ;
Villeneuve, Daniel L. .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2010, 29 (03) :730-741
[5]  
[Anonymous], 2013, COMPUTER SCI
[6]  
[Anonymous], 2013, Using deep learning to enhance cancer diagnosis and classification
[7]  
[Anonymous], 2016, ARXIV PREPRINT ARXIV
[8]   Omics of Blood Pressure and Hypertension [J].
Arnett, Donna K. ;
Claas, Steven A. .
CIRCULATION RESEARCH, 2018, 122 (10) :1409-1419
[9]   Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles [J].
Ban, Zhan ;
Yuan, Peng ;
Yu, Fubo ;
Peng, Ting ;
Zhou, Qixing ;
Hu, Xiangang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (19) :10492-10499
[10]   A multi-omics approach reveals mechanisms of nanomaterial toxicity and structure-activity relationships in alveolar macrophages [J].
Bannuscher, Anne ;
Karkossa, Isabel ;
Buhs, Sophia ;
Nollau, Peter ;
Kettler, Katja ;
Balas, Mihaela ;
Dinischiotu, Anca ;
Hellack, Bryan ;
Wiemann, Martin ;
Luch, Andreas ;
von Bergen, Martin ;
Haase, Andrea ;
Schubert, Kristin .
NANOTOXICOLOGY, 2020, 14 (02) :181-195