Nonlinear diffusion in the Keller-Segel model of parabolic-parabolic type

被引:7
作者
Xu, Xiangsheng [1 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
The Keller-Segel model; Chemotaxis equations; Non-linear diffusion model; Global existence; Uniform gradient bounds; GLOBAL EXISTENCE; WEAK SOLUTIONS; CHEMOTAXIS; EQUATIONS;
D O I
10.1016/j.jde.2020.12.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the initial boundary value problem for the system u(t) - Delta u(m)= -div(u(q)del v), v(t) - Delta v + v= u. This problem is the so-called Keller-Segel model with nonlinear diffusion. Our investigation reveals that nonlinear diffusion can prevent overcrowding. To be precise, we show that solutions are bounded as long as m > q > 0, thereby substantially generalizing the known results in this area. Furthermore, our result seems to imply that the Keller-Segel model can have bounded solutions and blow-up ones simultaneously. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:264 / 286
页数:23
相关论文
共 21 条
[1]  
[Anonymous], 1986, J. Differential Equations, V61, P141
[2]   The Keller-Segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion [J].
Burger, Martin ;
Di Francesco, Marco ;
Dolak-Struss, Yasmin .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (04) :1288-1315
[3]   Volume effects in the Keller-Segel model: energy estimates preventing blow-up [J].
Calvez, Vincent ;
Carrillo, Jose A. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02) :155-175
[4]   W2,P-SOLVABILITY OF THE DIRICHLET PROBLEM FOR NONDIVERGENCE ELLIPTIC-EQUATIONS WITH VMO COEFFICIENTS [J].
CHIARENZA, F ;
FRASCA, M ;
LONGO, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 336 (02) :841-853
[5]  
DiBenedetto E., 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[6]  
Gilbarg D., 2001, Classics in Mathematics
[7]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217
[8]   CROSS DIFFUSION PREVENTING BLOW-UP IN THE TWO-DIMENSIONAL KELLER-SEGEL MODEL [J].
Hittmeir, Sabine ;
Juengel, Ansgar .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) :997-1022
[9]  
Horstmann D., 2004, JAHRESBER DTSCH MATH, V106, P51
[10]  
Horstmann D., 2003, JAHRESBER DTSCH MATH, V105, P103