Graphs and digraphs represented by intervals and circular arcs

被引:1
作者
Das, Ashok Kumar [1 ]
Chakraborty, Ritapa [1 ]
机构
[1] Univ Calcutta, Dept Pure Math, 35 Ballygunge Circular Rd, Kolkata 700019, India
关键词
Circular arc graph; Circular arc digraph; Proper interval bigraph; Threshold graph; Proper circular arc bigraph; INDIFFERENCE DIGRAPHS; RECOGNITION; BIGRAPHS;
D O I
10.1016/j.dam.2016.11.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we have shown that a graph is a circular arc graph if and only if the corresponding symmetric digraph with loops is a circular arc digraph. We characterize circular arc digraphs and circular arc graphs using circular ordering of their edges. We also characterize a circular arc graph as a union of an interval graph and a threshold graph. Finally, we characterize proper interval bigraphs and proper circular arc bigraphs using two linear orderings of their vertex set. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 49
页数:9
相关论文
共 29 条
  • [1] [Anonymous], GRAPHS AND GENES
  • [2] [Anonymous], 2004, ANN DISCRETE MATH
  • [3] [Anonymous], CONGR NUMBER
  • [4] Circular-Arc Bigraphs and Its Subclasses
    Basu, Asim
    Das, Sandip
    Ghosh, Shamik
    Sen, Malay
    [J]. JOURNAL OF GRAPH THEORY, 2013, 73 (04) : 361 - 376
  • [5] CONNECTION DIGRAPHS AND 2ND-ORDER LINE DIGRAPHS
    BEINEKE, LW
    ZAMFIRESCU, CM
    [J]. DISCRETE MATHEMATICS, 1982, 39 (03) : 237 - 254
  • [6] Brown D., 2002, C NUMER, V157, P79
  • [7] New characterizations of proper interval bigraphs
    Das, Ashok Kumar
    Chakraborty, Ritapa
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (01) : 47 - 53
  • [8] Forbidden substructure for interval digraphs/bigraphs
    Das, Ashok Kumar
    Das, Sandip
    Sen, Malay
    [J]. DISCRETE MATHEMATICS, 2016, 339 (02) : 1028 - 1051
  • [9] Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs
    Deng, XT
    Hell, P
    Huang, J
    [J]. SIAM JOURNAL ON COMPUTING, 1996, 25 (02) : 390 - 403
  • [10] List homomorphisms and circular arc graphs
    Feder, T
    Hell, P
    Huang, J
    [J]. COMBINATORICA, 1999, 19 (04) : 487 - 505