Methyl and Ethylmercury elicit oxidative stress and unbalance the antioxidant system in Saccharomyces cerevisiae

被引:13
作者
Ramos, Angelica [1 ]
dos Santos, Matheus M. [1 ]
de Macedo, Gabriel T. [1 ]
Wildner, Guilherme [1 ]
Prestes, Alessandro S. [1 ]
Masuda, Claudio A. [2 ]
Dalla Corte, Cristiane L. [3 ]
Teixeira da Rocha, Joao Batista [1 ]
Barbosa, Nilda, V [1 ]
机构
[1] Univ Fed Santa Maria, Dept Bioquim & Biol Mol, Santa Maria, RS, Brazil
[2] Univ Fed Rio de Janeiro, Inst Bioquim Med Leopoldo De Meis, Rio De Janeiro, RJ, Brazil
[3] Univ Fed Pampa, Campus Cacapava do Sul, Cacapava Do Sul, RS, Brazil
关键词
S; cerevisiae; Methylmercury; Ethylmercury; Oxidative stress; Antioxidant defenses; IN-VITRO; ORGANOSELENIUM COMPOUNDS; METHYLMERCURY TOXICITY; TRANSCRIPTION FACTOR; MERCURY TOXICITY; CELL-DEATH; THIMEROSAL; NEUROTOXICITY; NEURODEVELOPMENT; INHIBITION;
D O I
10.1016/j.cbi.2019.108867
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Methylmercury (MeHg) and Ethylmercury (EtHg) are toxic to the central nervous system. Human exposure to MeHg and EtHg results mainly from the consumption of contaminated fish and thimerosal-containing vaccines, respectively. The mechanisms underlying the toxicity of MeHg and EtHg are still elusive. Here, we compared the toxic effects of MeHg and EtHg in Saccharomyces cerevisiae (S. cerevisiae) emphasizing the involvement of oxidative stress and the identification of molecular targets from antioxidant pathways. Wild type and mutant strains with deleted genes for antioxidant defenses, namely: gamma-glutamylcysteine synthetase, glutathione peroxidase, catalase, superoxide dismutase, mitochondrial peroxiredoxin, cytoplasmic thioredoxin, and redox transcription factor Yap1 were used to identify potential pathways and proteins from cell redox system targeted by MeHg and EtHg. MeHg and EtHg inhibited cell growth, decreased membrane integrity, and increased the granularity and production of reactive species (RS) in wild type yeast. The mutants were predominantly less tolerant of mercurial than wild type yeast. But, as the wild strain, mutants exhibited higher tolerance to MeHg than EtHg. Our results indicate the involvement of oxidative stress in the cytotoxicity of MeHg and EtHg and reinforce S. cerevisiae as a suitable model to explore the mechanisms of action of electrophilic toxicants.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae
    Matsuo, Ryo
    Mizobuchi, Shogo
    Nakashima, Maya
    Miki, Kensuke
    Ayusawa, Dai
    Fujii, Michihiko
    [J]. CURRENT GENETICS, 2017, 63 (05) : 895 - 907
  • [32] Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress
    Liu, Jidong
    Zhu, Yibo
    Du, Guocheng
    Zhou, Jingwen
    Chen, Jian
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (14) : 6467 - 6475
  • [33] Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress
    Jidong Liu
    Yibo Zhu
    Guocheng Du
    Jingwen Zhou
    Jian Chen
    [J]. Applied Microbiology and Biotechnology, 2013, 97 : 6467 - 6475
  • [34] Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress
    de Sa, Rafael A.
    de Castro, Frederico A. V.
    Eleutherio, Elis C. A.
    de Souza, Raquel M.
    da Silva, Joaquim F. M.
    Pereira, Marcos D.
    [J]. BRAZILIAN JOURNAL OF MICROBIOLOGY, 2013, 44 (03) : 993 - 1000
  • [35] Effects of biosynthesized ZnO nanoparticles on oxidative stress parameters in Saccharomyces cerevisiae
    Nandi, Ankita
    Mehera, Ritam
    Mandal, Moumita
    Chandra, Paramesh
    Mandal, Swapan K.
    Begum, Naznin Ara
    Jana, Chandan K.
    Das, Nilanjana
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 185
  • [36] Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae
    Grant, CM
    MacIver, FH
    Dawes, IW
    [J]. FEBS LETTERS, 1997, 410 (2-3) : 219 - 222
  • [37] Association of Deoxyhypusine Hydroxylase with Peroxiredoxin I was Modulated in the Yeast Saccharomyces cerevisiae under Oxidative Stress
    Shim, Doobo
    Park, Eun Sil
    Sim, Gyujin
    Lee, Ji-Young
    Kang, Ju-Hwan
    Yoo, Hyun Joo
    Choi, Yeon Jin
    Lee, Young Mee
    Lee, Sang Yeol
    Kim, Min Gab
    Kang, Dawon
    Jung, Eun-Jung
    Kang, Kee Ryeon
    [J]. JOURNAL OF THE KOREAN SOCIETY FOR APPLIED BIOLOGICAL CHEMISTRY, 2011, 54 (04): : 515 - 523
  • [38] Iron-dependent cleavage of ribosomal RNA during oxidative stress in the yeast Saccharomyces cerevisiae
    Zinskie, Jessica A.
    Ghosh, Arnab
    Trainor, Brandon M.
    Shedlovskiy, Daniel
    Pestov, Dimitri G.
    Shcherbik, Natalia
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (37) : 14237 - 14248
  • [39] Oxidative Stress and Antioxidant System in Periodontitis
    Wang, Yue
    Andrukhov, Oleh
    Rausch-Fan, Xiaohui
    [J]. FRONTIERS IN PHYSIOLOGY, 2017, 8
  • [40] Effects of selenium on oxidative damage and antioxidant enzymes of eukaryotic cells: wine Saccharomyces cerevisiae
    Talbi, W.
    Ghazouani, T.
    Braconi, D.
    Ben Abdallah, R.
    Raboudi, F.
    Santucci, A.
    Fattouch, S.
    [J]. JOURNAL OF APPLIED MICROBIOLOGY, 2019, 126 (02) : 555 - 566