Minuscule Schubert Varieties and Mirror Symmetry

被引:3
作者
Miura, Makoto [1 ]
机构
[1] Korea Inst Adv Study, 85 Hoegiro, Seoul 130722, South Korea
关键词
Calabi-Yau; mirror symmetry; minuscule; Schubert variety; toric degeneration; HIBI TORIC VARIETIES; CALABI-YAU; 3-FOLDS; SINGULAR LOCI; CONIFOLD TRANSITIONS; HOMOGENEOUS SPACES; QUANTUM COHOMOLOGY; REYE CONGRUENCES; GRASSMANNIANS; DEFORMATIONS; MANIFOLDS;
D O I
10.3842/SIGMA.2017.067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider smooth complete intersection Calabi-Yau 3-folds in minuscule Schubert varieties, and study their mirror symmetry by degenerating the ambient Schubert varieties to Hibi toric varieties. We list all possible Calabi-Yau 3-folds of this type up to deformation equivalences, and find a new example of smooth Calabi-Yau 3-folds of Picard number one; a complete intersection in a locally factorial Schubert variety Sigma of the Cayley plane OP2. We calculate topological invariants and BPS numbers of this Calabi-Yau 3-fold and conjecture that it has a non-trivial Fourier-Mukai partner.
引用
收藏
页数:25
相关论文
共 65 条
[1]  
Almkvist G., 2006, AMS IP STUD ADV MATH, P481
[2]  
Almkvist G., MATHAG0507430
[3]  
[Anonymous], 1979, American Mathematical Society Colloquium Publications
[4]  
[Anonymous], 1989, PENROSE TRANSFORM IT
[5]  
ASPINWALL PS, 1993, INT MATH RES NOTICES, V1993, P319
[6]  
Batyrev V. V., 2004, FAN C U TOR TUR, P109
[7]  
Batyrev V, 2010, ADV THEOR MATH PHYS, V14, P879
[8]  
Batyrev VV, 1996, HIGHER DIMENSIONAL COMPLEX VARIETIES, P39
[9]   Conifold transitions and mirror symmetry for Calabi-Yau complete intersections in Grassmannians [J].
Batyrev, VV ;
Ciocan-Fontanine, I ;
Kim, B ;
van Straten, D .
NUCLEAR PHYSICS B, 1998, 514 (03) :640-666
[10]   Mirror duality and string-theoretic Hodge numbers [J].
Batyrev, VV ;
Borisov, LA .
INVENTIONES MATHEMATICAE, 1996, 126 (01) :183-203