One-loop open-string integrals from differential equations: all-order α′-expansions at n points

被引:20
作者
Mafra, Carlos R. [1 ]
Schlotterer, Oliver [2 ]
机构
[1] Univ Southampton, STAG Res Ctr & Math Sci, Southampton SO17 1BJ, Hants, England
[2] Uppsala Univ, Dept Phys & Astron, S-75108 Uppsala, Sweden
基金
欧洲研究理事会;
关键词
Scattering Amplitudes; Superstrings and Heterotic Strings; MULTIPLE ZETA VALUES; ITERATED INTEGRALS; FEYNMAN-INTEGRALS; AMPLITUDES; PERIODS;
D O I
10.1007/JHEP03(2020)007
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study generating functions of moduli-space integrals at genus one that are expected to form a basis for massless n-point one-loop amplitudes of open superstrings and open bosonic strings. These integrals are shown to satisfy the same type of linear and homogeneous first-order differential equation w.r.t. the modular parameter tau which is known from the A-elliptic Knizhnik-Zamolodchikov-Bernard associator. The expressions for their tau-derivatives take a universal form for the integration cycles in planar and non-planar one-loop open-string amplitudes. These differential equations manifest the uniformly transcendental appearance of iterated integrals over holomorphic Eisenstein series in the low-energy expansion w.r.t. the inverse string tension alpha '. In fact, we are led to conjectural matrix representations of certain derivations dual to Eisenstein series. Like this, also the alpha '-expansion of non-planar integrals is manifestly expressible in terms of iterated Eisenstein integrals without referring to twisted elliptic multiple zeta values. The degeneration of the moduli-space integrals at tau -> i infinity is expressed in terms of their genus-zero analogues - (n+2)-point Parke-Taylor integrals over disk boundaries. Our results yield a compact formula for alpha '-expansions of n-point integrals over boundaries of cylinder- or Mobius-strip worldsheets, where any desired order is accessible from elementary operations.
引用
收藏
页数:81
相关论文
共 127 条
[1]   Iterated elliptic and hypergeometric integrals for Feynman diagrams [J].
Ablinger, J. ;
Bluemlein, J. ;
De Freitas, A. ;
van Hoeij, M. ;
Imamoglu, E. ;
Raab, C. G. ;
Radu, C. -S. ;
Schneider, C. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
[2]   Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12)
[3]   Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
PHYSICAL REVIEW LETTERS, 2017, 119 (05)
[4]   Analytic results for the planar double box integral relevant to top-pair production with a closed top loop [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10)
[5]   Planar Double Box Integral for Top Pair Production with a Closed Top Loop to all orders in the Dimensional Regularization Parameter [J].
Adams, Luise ;
Chaubey, Ekta ;
Weinzierl, Stefan .
PHYSICAL REVIEW LETTERS, 2018, 121 (14)
[6]   Feynman integrals and iterated integrals of modular forms [J].
Adams, Luise ;
Weinzierl, Stefan .
COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (02) :193-251
[7]   The ε-form of the differential equations for Feynman integrals in the elliptic case [J].
Adams, Luise ;
Weinzierl, Stefan .
PHYSICS LETTERS B, 2018, 781 :270-278
[8]  
[Anonymous], 1983, TATA LECT THETA
[9]  
[Anonymous], 2019, ARXIV190602099
[10]  
[Anonymous], ARXIV14075165