Pixel-wise quantification of myocardial perfusion using spatial Tikhonov regularization

被引:9
作者
Lehnert, Judith [1 ,2 ]
Wuebbeler, Gerd [1 ,2 ]
Kolbitsch, Christoph [1 ,2 ,3 ]
Chiribiri, Amedeo [3 ]
Coquelin, Loic [4 ]
Ebrard, Geraldine [4 ]
Smith, Nadia [5 ]
Schaeffter, Tobias [1 ,2 ,3 ]
Elster, Clemens [1 ,2 ]
机构
[1] PTB, Braunschweig, Germany
[2] PTB, Berlin, Germany
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[4] Lab Natl Metrol & Essai LNE, Trappes, France
[5] Natl Phys Lab NPL, Teddington, Middx, England
基金
欧盟地平线“2020”;
关键词
cardiovascular magnetic resonance; dynamic contrast-enhanced magnetic resonance imaging; myocardial perfusion; perfusion quantification; spatial resolution; Fermi method; Tikhonov regularization; CARDIOVASCULAR MAGNETIC-RESONANCE; IMAGING MICROSPHERE VALIDATION; EMISSION COMPUTED-TOMOGRAPHY; BLOOD-FLOW; CE-MARC; HEART; FEASIBILITY; SINGLE; TIME; MRI;
D O I
10.1088/1361-6560/aae758
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Quantification of myocardial perfusion by contrast-enhanced cardiovascular magnetic resonance imaging (CMR) aims for an observer independent and reproducible risk assessment of cardiovascular disease. Currently, the data used for the pixel-wise analysis of cardiac perfusion are either filtered prior to a fitting procedure, which inherently reduces the spatial resolution of data; or all pixels are considered without any regularization or prior filtering, which yields an unstable fit in the presence of low signal-to-noise ratio. Here, we propose a new pixel-wise analysis based on spatial Tikhonov regularization which exploits the spatial smoothness of the data and ensures accurate quantification even for images with low signal-to-noise ratio. The regularization parameter is determined automatically by an L-curve criterion. We study the performance of our method on a numerical phantom and demonstrate that the method reduces significantly the root-mean square error in the perfusion estimate compared to a non-regularized fit. In patient data our method allows us to recover the myocardial perfusion and to distinguish between healthy and ischemic regions.
引用
收藏
页数:14
相关论文
共 39 条
[1]  
[Anonymous], 1999, Science
[2]   Quantification in cardiac MRI: advances in image acquisition and processing [J].
Attili, Anil K. ;
Schuster, Andreas ;
Nagel, Eike ;
Reiber, Johan H. C. ;
van der Geest, Rob J. .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2010, 26 :27-40
[3]   Comparison of the Diagnostic Performance of Four Quantitative Myocardial Perfusion Estimation Methods Used in Cardiac MR Imaging: CE-MARC Substudy [J].
Biglands, John D. ;
Magee, Derek R. ;
Sourbron, Steven P. ;
Plein, Sven ;
Greenwood, John P. ;
Radjenovic, Aleksandra .
RADIOLOGY, 2015, 275 (02) :393-402
[4]   Quantification of bolus-tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization [J].
Calamante, F ;
Gadian, DG ;
Connelly, A .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (06) :1237-1247
[5]   Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart - A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association [J].
Cerqueira, MD ;
Weissman, NJ ;
Dilsizian, V ;
Jacobs, AK ;
Kaul, S ;
Laskey, WK ;
Pennell, DJ ;
Rumberger, JA ;
Ryan, T ;
Verani, MS .
CIRCULATION, 2002, 105 (04) :539-542
[6]   Perfusion phantom: An efficient and reproducible method to simulate myocardial first-pass perfusion measurements with cardiovascular magnetic resonance [J].
Chiribiri, Amedeo ;
Schuster, Andreas ;
Ishida, Masaki ;
Hautvast, Gilion ;
Zarinabad, Niloufar ;
Morton, Geraint ;
Otton, James ;
Plein, Sven ;
Breeuwer, Marcel ;
Batchelor, Philip ;
Schaeffter, Tobias ;
Nagel, Eike .
MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (03) :698-707
[7]   Absolute myocardial perfusion in canines measured by using dual-bolus first-pass MR imaging [J].
Christian, TF ;
Rettmann, DW ;
Aletras, AH ;
Liao, SL ;
Taylor, JL ;
Balaban, RS ;
Arai, AE .
RADIOLOGY, 2004, 232 (03) :677-684
[8]   A spatially-distributed computational model to quantify behaviour of contrast agents in MR perfusion imaging [J].
Cookson, A. N. ;
Lee, J. ;
Michler, C. ;
Chabiniok, R. ;
Hyde, E. ;
Notdsletten, D. ;
Smith, N. P. .
MEDICAL IMAGE ANALYSIS, 2014, 18 (07) :1200-1216
[9]   Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study [J].
Dabir, Darius ;
Child, Nicholas ;
Kalra, Ashwin ;
Rogers, Toby ;
Gebker, Rolf ;
Jabbour, Andrew ;
Plein, Sven ;
Yu, Chung-Yao ;
Otton, James ;
Kidambi, Ananth ;
McDiarmid, Adam ;
Broadbent, David ;
Higgins, David M. ;
Schnackenburg, Bernhard ;
Foote, Lucy ;
Cummins, Ciara ;
Nagel, Eike ;
Puntmann, Valentina O. .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2014, 16
[10]   Spatial regularization applied to factor analysis of medical image sequences (FAMIS) [J].
Frouin, F ;
De Cesare, A ;
Bouchareb, Y ;
Todd-Pokropek, A ;
Herment, A .
PHYSICS IN MEDICINE AND BIOLOGY, 1999, 44 (09) :2289-2306