Polyimide composites containing confined tetragonality high TC PbTiO3 nanofibers for high-temperature energy storage

被引:19
作者
Jian, Gang [1 ]
Jiao, Yong [1 ]
Meng, Qingzhen [1 ]
Xue, Fei [2 ]
Feng, Liang [1 ]
Yang, Ning [1 ]
Jiang, Jianhua [3 ]
Lu, Minfeng [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China
[2] Jiangxi Univ Technol, Sch Informat Engn, Nanchang 330098, Jiangxi, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Environm & Chem Engn, Zhenjiang 212003, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Dielectric composites; Polyimide (PI); PbTiO3 (PT) nanofibers; High temperature (HT); Electrical energy storage; POLYMER NANOCOMPOSITES; DIELECTRIC-CONSTANTS; BREAKDOWN STRENGTH; DENSITY; PERMITTIVITY; DISCHARGE; FILMS; PERFORMANCE; FABRICATION; PREDICTION;
D O I
10.1016/j.compositesb.2021.109190
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High temperature (HT) dielectrics have drawn increasing attentions due to strong potentials in capacitors working in extreme temperature conditions. The selection of high temperature ceramic fillers and polymers and the design of composite configurations are crucial for obtaining excellent dielectric and energy storage performances. In this study, PbTiO3 nanofibers with a confined tetragonality with a lower c/a ratio are synthesized by the molten-salt method and polyimide (PI)/PbTiO3 nanofiber composites are prepared via the in-situ polymerization. The composite (50 vol% filler loading) possesses greatly enhanced dielectric constant of 46 and low tan delta of -0.02 at 1 kHz; epsilon r is 13.9 times larger than 3.3 for PI. From electric displacement-electric field loop investigations, superior energy storage performances of a large discharged energy-density of 16 J cm-3 under 300 MV m-1 and a large charge/discharge efficiency of 80 % are obtained. Furthermore, dielectric constant, energy density and efficiency of the composite exhibit a very good thermal stability from the room-temperature to over 200 degrees C. Overall, superior properties as well as good thermal stabilities of the PI/PbTiO3 nanofiber composites indicate strong potentials in HT electrical energy storage capacitors.
引用
收藏
页数:10
相关论文
共 56 条
[1]   PVDF-based ferroelectric polymers and dielectric elastomers for sensor and actuator applications: a review [J].
Bae, Ji-Hun ;
Chang, Seung-Hwan .
FUNCTIONAL COMPOSITES AND STRUCTURES, 2019, 1 (01)
[2]   FERROELECTRIC PROPERTIES OF PBTIO3 [J].
BHIDE, VG ;
HEGDE, MS ;
DESHMUKH, KG .
PHYSICA, 1962, 28 (09) :871-&
[3]   Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density [J].
Bi, Ke ;
Bi, Meihua ;
Hao, Yanan ;
Luo, Wei ;
Cai, Ziming ;
Wang, Xiaohui ;
Huang, Yunhui .
NANO ENERGY, 2018, 51 :513-523
[4]  
Chaudhari VA., 2013, Smart Mater. Res, DOI [10.1155/2013/147524, DOI 10.1155/2013/147524]
[5]   Excellent Energy Storage of Sandwich-Structured PVDF-Based Composite at Low Electric Field by Introduction of the Hybrid CoFe2O4@BZT-BCT Nanofibers [J].
Chi, Qingguo ;
Ma, Tao ;
Zhang, Yue ;
Chen, Qingguo ;
Zhang, Changhai ;
Cui, Yang ;
Zhang, Tiandong ;
Lin, Jiaqi ;
Wang, Xuan ;
Lei, Qingquan .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (01) :403-412
[6]  
Chrisey D., 2011, NANOSTRUCTURED CAPAC
[7]   A dielectric polymer with high electric energy density and fast discharge speed [J].
Chu, Baojin ;
Zhou, Xin ;
Ren, Kailiang ;
Neese, Bret ;
Lin, Minren ;
Wang, Qing ;
Bauer, F. ;
Zhang, Q. M. .
SCIENCE, 2006, 313 (5785) :334-336
[8]   Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability [J].
Dang, Zhi-Min ;
Lin, You-Qin ;
Xu, Hai-Ping ;
Shi, Chang-Yong ;
Li, Sheng-Tao ;
Bai, Jinbo .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (10) :1509-1517
[9]   Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage [J].
Dang, Zhi-Min ;
Yuan, Jin-Kai ;
Yao, Sheng-Hong ;
Liao, Rui-Jin .
ADVANCED MATERIALS, 2013, 25 (44) :6334-6365
[10]   Nanocomposites-A Review of Electrical Treeing and Breakdown [J].
Danikas, Michael G. ;
Tanaka, Toshikatsu .
IEEE ELECTRICAL INSULATION MAGAZINE, 2009, 25 (04) :19-25