Existence results for densely pseudomonotone variational inequalities

被引:56
作者
Luc, DT
机构
[1] Univ Avignon, Dept Math, F-84000 Avignon, France
[2] Hanoi Inst Math, Hanoi, Vietnam
关键词
variational inequality; monotone operator; quasimonotone operator; recession direction;
D O I
10.1006/jmaa.2000.7278
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of solutions of densely pseudomonotone variational inequalities. Some particular cases in reflexive Banach spaces are presented which include several previously known results. New conditions are derived for monotone and densely pseudomonotone variational inequalities using the recession directions. (C) 2001 Academic Press.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 32 条
[1]  
[Anonymous], 1975, GEOMETRIC FUNCTIONAL
[2]   GENERAL EXISTENCE THEOREMS FOR UNILATERAL PROBLEMS IN CONTINUUM-MECHANICS [J].
BAIOCCHI, C ;
BUTTAZZO, G ;
GASTALDI, F ;
TOMARELLI, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 100 (02) :149-189
[3]  
Baiocchi C., 1984, Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems
[4]  
BREZIS H., 1973, North-Holland Math. Stud., V5
[5]   PSEUDOMONOTONE COMPLEMENTARITY-PROBLEMS IN HILBERT-SPACE [J].
COTTLE, RW ;
YAO, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (02) :281-295
[6]   Criteria for differentiable generalized monotone maps [J].
Crouzeix, JP ;
Ferland, JA .
MATHEMATICAL PROGRAMMING, 1996, 75 (03) :399-406
[7]  
DEDIEU JP, 1977, CR HEBD ACAD SCI, V287, P501
[8]   A GENERALIZATION OF TYCHONOFF FIXED POINT THEOREM [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1961, 142 (03) :305-310
[9]  
Giannessi F., 1995, Variational Inequalities and Network Equilibrium Problems
[10]  
GLOWINSKI R, 1976, ANAL NUMERIQUES INEQ