A Nonlinear Fractional Problem with a Second Kind Integral Condition for Time-Fractional Partial Differential Equation

被引:1
|
作者
Abdelouahab, Benbrahim [1 ]
Oussaeif, Taki-Eddine [1 ]
Ouannas, Adel [1 ]
Saad, Khaled M. [2 ]
Jahanshahi, Hadi [3 ]
Diar, Ahmed [1 ]
Aljuaid, Awad M. [4 ]
Aly, Ayman A. [5 ]
机构
[1] Univ Larbi Ben Mhidi, Dept Math & Comp Sci, Oum El Bouaghi, Algeria
[2] Taiz Univ, Fac Appl Sci, Dept Math, Taizi, Yemen
[3] Univ Manitoba, Dept Mech Engn, Winnipeg, MB R3T 5V6, Canada
[4] Taif Univ, Coll Engn, Dept Ind Engn, POB 11099, At Taif 21944, Saudi Arabia
[5] Taif Univ, Coll Engn, Dept Mech Engn, POB 11099, At Taif 21944, Saudi Arabia
关键词
SPECTRAL METHOD; WEAK SOLUTION; SOLVABILITY;
D O I
10.1155/2022/2913587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this research is to demonstrate the existence and the uniqueness of the weak solution for a semilinear fractional parabolic problem with the special case of the second integral boundary condition. For this aim, we split the proof into two parts; to study the main linear problem part, we used the variable separation method, and concerning the semilinear problem part, we apply an iterative method and a priori estimate for the study of the weak solution.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A second-order implicit difference scheme for the nonlinear time-space fractional Schrodinger equation
    Fei, Mingfa
    Wang, Nan
    Huang, Chengming
    Ma, Xiaohua
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 399 - 411
  • [42] Positive solutions for fractional differential equation at resonance under integral boundary conditions
    Wang, Youyu
    Huang, Yue
    Li, Xianfei
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 238 - 253
  • [43] EXISTENCE OF SOLUTION FOR HIGHER ORDER NONLINEAR CAPUTO FRACTIONAL DIFFERENTIAL EQUATION WITH NONLINEAR GROWTH
    Srivastava, Satyam Arayan
    Dey, Rajarshi
    Domoshnitsky, Alexander
    Padhi, Seshadev
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2024, 16 (03): : 199 - 213
  • [44] Solving Time-Fractional Order Telegraph Equation Via Sinc–Legendre Collocation Method
    N. H. Sweilam
    A. M. Nagy
    Adel A. El-Sayed
    Mediterranean Journal of Mathematics, 2016, 13 : 5119 - 5133
  • [45] An implicit numerical scheme for a class of multi-term time-fractional diffusion equation
    Kanth, A. S. V. Ravi
    Garg, Neetu
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (06)
  • [46] Generalized fractional-order Jacobi functions for solving a nonlinear systems of fractional partial differential equations numerically
    Kamali, Farzaneh
    Saeedi, Habibollah
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 3155 - 3174
  • [47] A fast algorithm for multi-term time-space fractional diffusion equation with fractional boundary condition
    Lu, Zhenhao
    Fan, Wenping
    NUMERICAL ALGORITHMS, 2025, 98 (03) : 1171 - 1194
  • [48] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843
  • [49] A fourth-order compact difference method for the nonlinear time-fractional fourth-order reaction-diffusion equation
    Haghi, Majid
    Ilati, Mohammad
    Dehghan, Mehdi
    ENGINEERING WITH COMPUTERS, 2023, 39 (02) : 1329 - 1340
  • [50] Spectral approximation for nonlinear time fractional Schrodinger equation on graded meshes
    Chen, Li
    Lu, Shujuan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (12) : 2524 - 2541