A Nonlinear Fractional Problem with a Second Kind Integral Condition for Time-Fractional Partial Differential Equation

被引:1
|
作者
Abdelouahab, Benbrahim [1 ]
Oussaeif, Taki-Eddine [1 ]
Ouannas, Adel [1 ]
Saad, Khaled M. [2 ]
Jahanshahi, Hadi [3 ]
Diar, Ahmed [1 ]
Aljuaid, Awad M. [4 ]
Aly, Ayman A. [5 ]
机构
[1] Univ Larbi Ben Mhidi, Dept Math & Comp Sci, Oum El Bouaghi, Algeria
[2] Taiz Univ, Fac Appl Sci, Dept Math, Taizi, Yemen
[3] Univ Manitoba, Dept Mech Engn, Winnipeg, MB R3T 5V6, Canada
[4] Taif Univ, Coll Engn, Dept Ind Engn, POB 11099, At Taif 21944, Saudi Arabia
[5] Taif Univ, Coll Engn, Dept Mech Engn, POB 11099, At Taif 21944, Saudi Arabia
关键词
SPECTRAL METHOD; WEAK SOLUTION; SOLVABILITY;
D O I
10.1155/2022/2913587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this research is to demonstrate the existence and the uniqueness of the weak solution for a semilinear fractional parabolic problem with the special case of the second integral boundary condition. For this aim, we split the proof into two parts; to study the main linear problem part, we used the variable separation method, and concerning the semilinear problem part, we apply an iterative method and a priori estimate for the study of the weak solution.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On a nonlinear time-fractional cable equation
    Jleli, Mohamed
    Samet, Bessem
    AIMS MATHEMATICS, 2024, 9 (09): : 23584 - 23597
  • [2] A priori estimates for weak solution for a time-fractional nonlinear reaction-diffusion equations with an integral condition
    Taki-Eddine, Oussaeif
    Abdelfatah, Bouziani
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 79 - 89
  • [3] Inverse Source Problem for a Multiterm Time-Fractional Diffusion Equation with Nonhomogeneous Boundary Condition
    Sun, L. L.
    Yan, X. B.
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [4] Solution to fractional pseudoparabolic equation with fractional integral condition
    Chaoui A.
    Rezgui N.
    Rendiconti del Circolo Matematico di Palermo Series 2, 2018, 67 (2): : 205 - 213
  • [5] TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES
    Gorenflo, Rudolf
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 799 - 820
  • [6] Time-fractional diffusion equation in the fractional Sobolev spaces
    Rudolf Gorenflo
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2015, 18 : 799 - 820
  • [7] ON THE SOURCE IDENTIFICATION PROBLEM FOR A DEGENERATE TIME-FRACTIONAL DIFFUSION EQUATION
    Nouar, Maroua
    Chattouh, Abdeldjalil
    JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 15 (05): : 84 - 98
  • [8] Application Jacobi spectral method for solving the time-fractional differential equation
    Sazmand, Afsane
    Behroozifar, Mahmoud
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 49 - 68
  • [9] A class of time-fractional reaction-diffusion equation with nonlocal boundary condition
    Zhou, Yong
    Shangerganesh, L.
    Manimaran, J.
    Debbouche, Amar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (08) : 2987 - 2999
  • [10] Existence and Uniqueness of the Solution for an Inverse Problem of a Fractional Diffusion Equation with Integral Condition
    Oussaeif, Taki-Eddine
    Antara, Benaoua
    Ouannas, Adel
    Batiha, Iqbal M.
    Saad, Khaled M.
    Jahanshahi, Hadi
    Aljuaid, Awad M.
    Aly, Ayman A.
    JOURNAL OF FUNCTION SPACES, 2022, 2022