Topological entropy for local processes

被引:6
作者
Oprocha, Piotr [1 ,2 ]
Wilczynski, Pawel [3 ]
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
[3] Jagiellonian Univ, Dept Math, PL-30348 Krakow, Poland
关键词
Topological entropy; Local process; Isolating segments; Fixed point index; DISTRIBUTIONAL CHAOS; MAPS; INTERVAL; DYNAMICS; SYSTEMS;
D O I
10.1016/j.jde.2010.06.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this article is to formalize definition of chaos (in terms of topological entropy) for dynamics of processes described by nonautonomous differential equations. We state a formal definition of topological entropy in this setting and provide tools for estimation of its value (its upper or lower bounds) in terms of Poincare sections. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1929 / 1967
页数:39
相关论文
共 23 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
[Anonymous], 1995, ENCY MATH APPL
[3]  
[Anonymous], 1976, LECT NOTES MATH
[4]  
Arnold V.I., 2006, Ordinary Differential Equations, V58291st
[5]   Topological chaos: what may this mean? [J].
Blanchard, Francois .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2009, 15 (01) :23-46
[7]   Topological entropy of maps on the real line [J].
Cánovas, JS ;
Rodríguez, JM .
TOPOLOGY AND ITS APPLICATIONS, 2005, 153 (5-6) :735-746
[8]  
Dinaburg E.I., 1971, IZV AKAD NAUK SSSR, V35, P324
[9]   POSITIVE SEQUENCE TOPOLOGICAL-ENTROPY CHARACTERIZES CHAOTIC MAPS [J].
FRANZOVA, N ;
SMITAL, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) :1083-1086
[10]  
Gradshteyn S., 2014, Table of Integrals, Series, and Products, V8th