Effector-Triggered Immunity: From Pathogen Perception to Robust Defense

被引:986
作者
Cui, Haitao [1 ]
Tsuda, Kenichi [1 ]
Parker, Jane E. [1 ]
机构
[1] Max Planck Inst Plant Breeding Res, Dept Plant Microbe Interact, D-50829 Cologne, Germany
来源
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 66 | 2015年 / 66卷
关键词
NLR receptors; disease resistance signaling; plant-pathogen coevolution; defense networks; transcriptional reprogramming; PLANT-DISEASE RESISTANCE; NB-LRR PROTEIN; NADPH OXIDASE RBOHD; CELL-DEATH; STRUCTURAL BASIS; AVIRULENCE GENE; INNATE IMMUNITY; NUCLEAR ACCUMULATION; BACTERIAL EFFECTORS; CRYSTAL-STRUCTURE;
D O I
10.1146/annurev-arplant-050213-040012
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.
引用
收藏
页码:487 / 511
页数:25
相关论文
共 159 条
[1]   Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease [J].
Ade, Jules ;
DeYoung, Brody J. ;
Golstein, Catherine ;
Innes, Roger W. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (07) :2531-2536
[2]   An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm [J].
Armstrong, MR ;
Whisson, SC ;
Pritchard, L ;
Bos, JIB ;
Venter, E ;
Avrova, AO ;
Rehmany, AP ;
Böhme, U ;
Brooks, K ;
Cherevach, I ;
Hamlin, N ;
White, B ;
Frasers, A ;
Lord, A ;
Quail, MA ;
Churcher, C ;
Hall, N ;
Berriman, M ;
Huang, S ;
Kamoun, S ;
Beynon, JL ;
Birch, PRJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (21) :7766-7771
[3]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[4]   Structure-Function Analysis of Barley NLR Immune Receptor MLA10 Reveals Its Cell Compartment Specific Activity in Cell Death and Disease Resistance [J].
Bai, Shiwei ;
Liu, Jie ;
Chang, Cheng ;
Zhang, Ling ;
Maekawa, Takaki ;
Wang, Qiuyun ;
Xiao, Wenkai ;
Liu, Yule ;
Chai, Jijie ;
Takken, Frank L. W. ;
Schulze-Lefert, Paul ;
Shen, Qian-Hua .
PLOS PATHOGENS, 2012, 8 (06)
[5]   MAP KINASE PHOSPHATASE1 and PROTEIN TYROSINE PHOSPHATASE1 Are Repressors of Salicylic Acid Synthesis and SNC1-Mediated Responses in Arabidopsis [J].
Bartels, Sebastian ;
Anderson, Jeffrey C. ;
Besteiro, Marina A. Gonzalez ;
Carreri, Alessandro ;
Hirt, Heribert ;
Buchala, Antony ;
Metraux, Jean-Pierre ;
Peck, Scott C. ;
Ulm, Roman .
PLANT CELL, 2009, 21 (09) :2884-2897
[6]   Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7 [J].
Bartsch, M ;
Gobbato, E ;
Bednarek, P ;
Debey, S ;
Schultze, JL ;
Bautor, J ;
Parker, JE .
PLANT CELL, 2006, 18 (04) :1038-1051
[7]   The Rx gene from potato controls separate virus resistance and cell death responses [J].
Bendahmane, A ;
Kanyuka, K ;
Baulcombe, DC .
PLANT CELL, 1999, 11 (05) :781-791
[8]   Sphingolipids and plant defense/disease: the "death" connection and beyond [J].
Berkey, Robert ;
Bendigeri, Dipti ;
Xiao, Shunyuan .
FRONTIERS IN PLANT SCIENCE, 2012, 3
[9]   Structural and Functional Analysis of a Plant Resistance Protein TIR Domain Reveals Interfaces for Self-Association, Signaling, and Autoregulation [J].
Bernoux, Maud ;
Ve, Thomas ;
Williams, Simon ;
Warren, Christopher ;
Hatters, Danny ;
Valkov, Eugene ;
Zhang, Xiaoxiao ;
Ellis, Jeffrey G. ;
Kobe, Bostjan ;
Dodds, Peter N. .
CELL HOST & MICROBE, 2011, 9 (03) :200-211
[10]   Pathogen Effectors Target Arabidopsis EDS1 and Alter Its Interactions with Immune Regulators [J].
Bhattacharjee, Saikat ;
Halane, Morgan K. ;
Kim, Sang Hee ;
Gassmann, Walter .
SCIENCE, 2011, 334 (6061) :1405-1408