SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

被引:9
|
作者
Tsiamas, Ioannis [1 ]
Gallego, Gerard I. [1 ]
Fonollosa, Jose A. R. [1 ]
Costa-jussa, Marta R. [1 ]
机构
[1] Univ Politecn Cataluna, TALP Res Ctr, Barcelona, Spain
来源
关键词
speech translation; audio segmentation;
D O I
10.21437/Interspeech.2022-59
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Speech translation models are unable to directly process long audios, like TED talks, which have to be split into shorter segments. Speech translation datasets provide manual segmentations of the audios, which are not available in real-world scenarios, and existing segmentation methods usually significantly reduce translation quality at inference time. To bridge the gap between the manual segmentation of training and the automatic one at inference, we propose Supervised Hybrid Audio Segmentation (SHAS), a method that can effectively learn the optimal segmentation from any manually segmented speech corpus. First, we train a classifier to identify the included frames in a segmentation, using speech representations from a pre-trained wav2vec 2.0. The optimal splitting points are then found by a probabilistic Divide-and-Conquer algorithm that progressively splits at the frame of lowest probability until all segments are below a pre-specified length. Experiments on MuST-C and m-TEDx show that the translation of the segments produced by our method approaches the quality of the manual segmentation on 5 languages pairs. Namely, SHAS retains 95-98% of the manual segmentation's BLEU score, compared to the 87-93% of the best existing methods. Our method is additionally generalizable to different domains and achieves high zero-shot performance in unseen languages.
引用
收藏
页码:106 / 110
页数:5
相关论文
共 50 条
  • [1] End-to-End Simultaneous Speech Translation with Differentiable Segmentation
    Zhang, Shaolei
    Feng, Yang
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 7659 - 7680
  • [2] Impact of Encoding and Segmentation Strategies on End-to-End Simultaneous Speech Translation
    Nguyen, Ha
    Esteve, Yannick
    Besacier, Laurent
    INTERSPEECH 2021, 2021, : 2371 - 2375
  • [3] Speech Segmentation Optimization using Segmented Bilingual Speech Corpus for End-to-end Speech Translation
    Fukuda, Ryo
    Sudoh, Katsuhito
    Nakamura, Satoshi
    INTERSPEECH 2022, 2022, : 121 - 125
  • [4] MULTILINGUAL END-TO-END SPEECH TRANSLATION
    Inaguma, Hirofumi
    Duh, Kevin
    Kawahara, Tatsuya
    Watanabe, Shinji
    2019 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU 2019), 2019, : 570 - 577
  • [5] End-to-End Speech Translation for Code Switched Speech
    Weller, Orion
    Sperber, Matthias
    Pires, Telmo
    Setiawan, Hendra
    Gollan, Christian
    Telaar, Dominic
    Paulik, Matthias
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 1435 - 1448
  • [6] End-to-End Speech Translation with Adversarial Training
    Li, Xuancai
    Chen, Kehai
    Zhao, Tiejun
    Yang, Muyun
    WORKSHOP ON AUTOMATIC SIMULTANEOUS TRANSLATION CHALLENGES, RECENT ADVANCES, AND FUTURE DIRECTIONS, 2020, : 10 - 14
  • [7] END-TO-END AUTOMATIC SPEECH TRANSLATION OF AUDIOBOOKS
    Berard, Alexandre
    Besacier, Laurent
    Kocabiyikoglu, Ali Can
    Pietquin, Olivier
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6224 - 6228
  • [8] End-to-End Speech Translation with Knowledge Distillation
    Liu, Yuchen
    Xiong, Hao
    Zhang, Jiajun
    He, Zhongjun
    Wu, Hua
    Wang, Haifeng
    Zong, Chengqing
    INTERSPEECH 2019, 2019, : 1128 - 1132
  • [9] Adaptive Feature Selection for End-to-End Speech Translation
    Zhang, Biao
    Titov, Ivan
    Haddow, Barry
    Sennrich, Rico
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 2533 - 2544
  • [10] MINTZAI: End-to-end Deep Learning for Speech Translation
    Etchegoyhen, Thierry
    Arzelus, Haritz
    Gete, Harritxu
    Alvarez, Aitor
    Hernaez, Inma
    Navas, Eva
    Gonzalez-Docasal, Ander
    Osacar, Jaime
    Benites, Edson
    Ellakuria, Igor
    Calonge, Eusebi
    Martin, Maite
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2020, (65): : 97 - 100