Coverings over lax integrable equations and their nonlocal symmetries

被引:16
|
作者
Baran, H. [1 ]
Krasil'shchik, I. S. [2 ]
Morozov, O. I. [3 ]
Vojcak, P. [1 ]
机构
[1] Silesian Univ Opava, Math Inst, Opava, Czech Republic
[2] Independent Univ Moscow, Moscow, Russia
[3] AGH Univ Sci & Technol, Fac Appl Math, Krakow, Poland
关键词
partial differential equation; three-dimensional rdDym equation; nonlocal symmetry; recursion operator; PARTIAL-DIFFERENTIAL-EQUATIONS; REDUCTIONS; HIERARCHY; SYSTEMS;
D O I
10.1134/S0040577916090014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the three-dimensional rdDym equation u (ty) = u (x) u (xy) -u (y) u (xx) . Using the known Lax representation with a nonremovable parameter and two hierarchies of nonlocal conservation laws associated with it, we describe the algebras of nonlocal symmetries in the corresponding coverings.
引用
收藏
页码:1273 / 1295
页数:23
相关论文
共 50 条
  • [1] Coverings over lax integrable equations and their nonlocal symmetries
    H. Baran
    I. S. Krasil’shchik
    O. I. Morozov
    P. Vojčák
    Theoretical and Mathematical Physics, 2016, 188 : 1273 - 1295
  • [2] Higher symmetries of cotangent coverings for Lax-integrable multi-dimensional partial differential equations and Lagrangian deformations
    Baran, H.
    Krasil'shchik, I. S.
    Morozov, O. I.
    Vojcak, P.
    PHYSICS AND MATHEMATICS OF NONLINEAR PHENOMENA 2013 (PMNP2013), 2014, 482
  • [3] Symmetries and Reductions of Integrable Nonlocal Partial Differential Equations
    Peng, Linyu
    SYMMETRY-BASEL, 2019, 11 (07):
  • [4] Four super integrable equations: nonlocal symmetries and applications
    Zhou, Hanyu
    Tian, Kai
    Li, Nianhua
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (22)
  • [5] APPLICATIONS OF COVERINGS AND NONLOCAL SYMMETRIES
    VANBEMMELEN, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (22): : 6409 - 6420
  • [6] Nonlocal Symmetries of Integrable Linearly Degenerate Equations: A Comparative Study
    Baran, H.
    Krasilshchik, I. S.
    Morozov, O. I.
    Vojcak, P.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2018, 196 (02) : 1089 - 1110
  • [7] Nonlocal Symmetries of Integrable Linearly Degenerate Equations: A Comparative Study
    H. Baran
    I. S. Krasilshchik
    O. I. Morozov
    P. Vojčák
    Theoretical and Mathematical Physics, 2018, 196 : 1089 - 1110
  • [8] Symmetries of Quantum Lax Equations for the Painlevé Equations
    Hajime Nagoya
    Yasuhiko Yamada
    Annales Henri Poincaré, 2014, 15 : 313 - 344
  • [9] Symmetries of Quantum Lax Equations for the Painleve Equations
    Nagoya, Hajime
    Yamada, Yasuhiko
    ANNALES HENRI POINCARE, 2014, 15 (02): : 313 - 344
  • [10] Coverings and integrable pseudosymmetries of differential equations
    Chetverikov, V. N.
    DIFFERENTIAL EQUATIONS, 2017, 53 (11) : 1428 - 1439