Attention Gate ResU-Net for Automatic MRI Brain Tumor Segmentation

被引:171
作者
Zhang, Jianxin [1 ,2 ]
Jiang, Zongkang [1 ]
Dong, Jing [1 ]
Hou, Yaqing [3 ]
Liu, Bin [4 ,5 ]
机构
[1] Dalian Univ, Minist Educ, Key Lab Adv Design & Intelligent Comp, Dalian 116622, Peoples R China
[2] Dalian Minzu Univ, Sch Comp Sci & Engn, Dalian 116600, Peoples R China
[3] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
[4] Dalian Univ Technol, Int Sch Informat Sci & Engn DUT RUISE, Dalian 116622, Peoples R China
[5] Dalian Univ Technol, Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian 116622, Peoples R China
基金
中国国家自然科学基金;
关键词
MRI; brain tumor segmentation; U-Net; attention gate; residual module; CONVOLUTIONAL NEURAL-NETWORKS; CLASSIFICATION; MODEL;
D O I
10.1109/ACCESS.2020.2983075
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Brain tumor segmentation technology plays a pivotal role in the process of diagnosis and treatment of MRI brain tumors. It helps doctors to locate and measure tumors, as well as develop treatment and rehabilitation strategies. Recently, MRI brain tumor segmentation methods based on U-Net architecture have become popular as they largely improve the segmentation accuracy by applying skip connection to combine high-level feature information and low-level feature information. Meanwhile, researchers have demonstrated that introducing attention mechanism into U-Net can enhance local feature expression and improve the performance of medical image segmentation. In this work, we aim to explore the effectiveness of a recent attention module called attention gate for brain tumor segmentation task, and a novel Attention Gate Residual U-Net model, i.e., AGResU-Net, is further presented. AGResU-Net integrates residual modules and attention gates with a primeval and single U-Net architecture, in which a series of attention gate units are added into the skip connection for highlighting salient feature information while disambiguating irrelevant and noisy feature responses. AGResU-Net not only extracts abundant semantic information to enhance the ability of feature learning, but also pays attention to the information of small-scale brain tumors. We extensively evaluate attention gate units on three authoritative MRI brain tumor benchmarks, i.e., BraTS 2017, BraTS 2018 and BraTS 2019. Experimental results illuminate that models with attention gate units, i.e., Attention Gate U-Net (AGU-Net) and AGResU-Net, outperform their baselines of U-Net and ResU-Net, respectively. In addition, AGResU-Net achieves competitive performance than the representative brain tumor segmentation methods.
引用
收藏
页码:58533 / 58545
页数:13
相关论文
共 67 条
  • [11] Planning and suggestions for the walnut production areas in Beijing
    Gao, Zhaoquan
    Li, Zhiqiang
    Chen, Jihu
    [J]. 2018 10TH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA), 2018, : 358 - 361
  • [12] GLOROT Y., 2010, JMLR WORKSHOP C P, V9, P249, DOI DOI 10.1109/LGRS.2016.2565705
  • [13] Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs
    Gulshan, Varun
    Peng, Lily
    Coram, Marc
    Stumpe, Martin C.
    Wu, Derek
    Narayanaswamy, Arunachalam
    Venugopalan, Subhashini
    Widner, Kasumi
    Madams, Tom
    Cuadros, Jorge
    Kim, Ramasamy
    Raman, Rajiv
    Nelson, Philip C.
    Mega, Jessica L.
    Webster, R.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22): : 2402 - 2410
  • [14] Brain tumor segmentation with Deep Neural Networks
    Havaei, Mohammad
    Davy, Axel
    Warde-Farley, David
    Biard, Antoine
    Courville, Aaron
    Bengio, Yoshua
    Pal, Chris
    Jodoin, Pierre-Marc
    Larochelle, Hugo
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 35 : 18 - 31
  • [15] He K., 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), DOI [DOI 10.1109/CVPR.2016.90, 10.1109/CVPR.2016.90]
  • [16] Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
  • [17] Brain Tumor Segmentation Using Multi-Cascaded Convolutional Neural Networks and Conditional Random Field
    Hu, Kai
    Gan, Qinghai
    Zhang, Yuan
    Deng, Shuhua
    Xiao, Fen
    Huang, Wei
    Cao, Chunhong
    Gao, Xieping
    [J]. IEEE ACCESS, 2019, 7 : 92615 - 92629
  • [18] Hu Y., 2017, INT MICCAI BRAINL WO, P423
  • [19] Huang G., 2017, Computer Vision and Pattern Recognition CVPR, P4700, DOI [DOI 10.1109/CVPR.2017.243, 10.1109/CVPR.2017.243]
  • [20] MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation
    Ibtehaz, Nabil
    Rahman, M. Sohel
    [J]. NEURAL NETWORKS, 2020, 121 : 74 - 87