Processing scintillation gamma-ray spectra by artificial neural network

被引:7
作者
Shahabinejad, Hadi [1 ]
Vosoughi, Naser [1 ]
Saheli, Fereshte [1 ]
机构
[1] Sharif Univ Technol, Dept Energy Engn, Tehran, Iran
关键词
Elemental analysis; Gamma-ray spectroscopy; Artificial neural network; Radioisotope identification; Prompt gamma neutron activation analysis; NEUTRON-ACTIVATION ANALYSIS; ELEMENTAL COMPOSITION; IDENTIFICATION; REGRESSION; ALGORITHM; DETECTOR; PEAK;
D O I
10.1007/s10967-020-07239-w
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Elemental analysis can be performed using obtained gamma-ray spectrum of the sample under study. In this work, simple Multi-Layer Perceptron (MLP) neural network models are proposed for analyzing a gamma-ray emitting sample using whole information of its obtained gamma-ray spectrum. Elemental analysis is performed in two fields of study using 3 x 3 inch NaI(Tl) detectors: Radio-Isotope Identification (RIID) and Prompt Gamma Neutron Activation Analysis (PGNAA). The gamma-ray point sources are used for an empirical study in RIID field, while a Monte Carlo simulation study is considered for determining chlorine and water content of crude oil using combination of PGNAA technique and a MLP model. According to the obtained results of both empirical and simulation studies, the proposed ANN models are appropriate for elemental analysis using whole gamma-ray spectral information of sample under study.
引用
收藏
页码:471 / 483
页数:13
相关论文
共 37 条
  • [1] INTELLIGENT ANALYSIS OF LOW-COUNT SCINTILLATION SPECTRA USING SUPPORT VECTOR REGRESSION AND FUZZY LOGIC
    Alamaniotis, Miltiadis
    Lee, Sangkyu
    Jevremovic, Tatjana
    [J]. NUCLEAR TECHNOLOGY, 2015, 191 (01) : 41 - 57
  • [2] Hybrid Fuzzy-Genetic Approach Integrating Peak Identification and Spectrum Fitting for Complex Gamma-Ray Spectra Analysis
    Alamaniotis, Miltiadis
    Jevremovic, Tatjana
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2015, 62 (03) : 1262 - 1277
  • [3] [Anonymous], 2011, MCNPX 2 7 E EXTENSIO
  • [4] Investigating the potentialities of Monte Carlo simulation for assessing soil water content via proximal gamma-ray spectroscopy
    Baldoncini, Marica
    Alberi, Matteo
    Bottardi, Carlo
    Chiarelli, Enrico
    Raptis, Kassandra Giulia Cristina
    Strati, Virginia
    Mantovani, Fabio
    [J]. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2018, 192 : 105 - 116
  • [5] Radio-Isotope Identification Algorithms for NaI gamma Spectra
    Burr, Tom
    Hamada, Michael
    [J]. ALGORITHMS, 2009, 2 (01): : 339 - 360
  • [6] A new FSA approach for in situ γ ray spectroscopy
    Caciolli, A.
    Baldoncini, M.
    Bezzon, G. P.
    Broggini, C.
    Buso, G. P.
    Callegari, I.
    Colonna, T.
    Fiorentini, G.
    Guastaldi, E.
    Mantovani, F.
    Massa, G.
    Menegazzo, R.
    Mou, L.
    Alvarez, C. Rossi
    Shyti, M.
    Zanon, A.
    Xhixha, G.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2012, 414 : 639 - 645
  • [7] Implementation of the Monte Carlo Library Least-Squares (MCLLS) approach for quantification of the chlorine impurity in an on-line crude oil monitoring system
    Chang, Hao Ping
    Meric, Ilker
    Sudac, Davorin
    Nad, Karlo
    Obhodas, Jasmina
    Hou, Guojing
    Zhang, Yan
    Gardner, Robin P.
    [J]. RADIATION PHYSICS AND CHEMISTRY, 2019, 155 : 197 - 201
  • [8] Development of a method for on-line determination of chlorine impurity in crude oil by using fast neutrons
    Chang, Hao Ping
    Meric, Ilker
    Sudac, Davorin
    Nad, Karlo
    Obhodas, Jasmina
    Gardner, Robin P.
    [J]. FUEL, 2017, 209 : 643 - 649
  • [9] Cichocki A., 2002, ADAPTIVE BLIND SIGNA
  • [10] MULTIPLE LINEAR REGRESSION ANALYSIS OF SCINTILLATION GAMMA-RAY SPECTRA - THEORECTICAL AND PRACTICAL CONSIDERATIONS
    COVELL, DF
    BROWN, M
    YAMAMOTO, S
    [J]. NUCLEAR INSTRUMENTS & METHODS, 1970, 80 (01): : 55 - +