Estimates on the Green function and existence of positive solutions for some nonlinear polyharmonic problems outside the unit ball

被引:5
作者
Bachar, Imed [1 ]
Maagli, Habib [1 ]
Zeddini, Noureddine [1 ]
机构
[1] Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
关键词
Green's function; Kato's class; positive solution; Schauder fixed point theorem; polyharmonic elliptic equation;
D O I
10.1142/S0219530508001092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G(m,n)(D) be the Green function of (-Delta)(m), m >= 1, on the complementary D of the unit closed ball in R-n, n >= 2, with Dirichlet boundary conditions (partial derivative/partial derivative nu)(j) =0, 0 <= j <= m-1. We establish some estimates on G(m,n)(D) including the 3G- Inequality given by (1.3). Next, we introduce a polyharmonic Kato class of functions K-m,n(infinity)(D) and we exploit the properties of this class to study the existence of positive solutions of some polyharmonic nonlinear elliptic problems.
引用
收藏
页码:121 / 150
页数:30
相关论文
共 22 条
[1]  
[Anonymous], SIAM CLASSICS APPL M
[2]   On a singular semilinear elliptic boundary value problem and the boundary Harnack principle [J].
Athreya, S .
POTENTIAL ANALYSIS, 2002, 17 (03) :293-301
[3]   Estimates on the green function and existence of positive solutions of nonlinear singular elliptic equations [J].
Bachar, I ;
Maâgli, H ;
Zeddini, N .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2003, 5 (03) :401-434
[4]  
BOGGIO T, 1905, REND CIRC MAT PALERM, V20, P97
[5]   ON SOME NONLOCAL VARIATIONAL PROBLEMS [J].
Chipot, Michel ;
Gangbo, Wilfrid ;
Kawohl, Bernd .
ANALYSIS AND APPLICATIONS, 2006, 4 (04) :345-356
[6]  
Chung K. L., 1995, A Series of Comprehensive Studies in Mathematics, V312, DOI [DOI 10.1007/978-3-642-57856-4, 10.1007/978-3-642-57856-4]
[7]  
CIRSTEA F, 2002, J MATH PURE APPL, V81, P827
[8]   Blow-up boundary solutions of semilinear elliptic problems [J].
Cîrstea, FS ;
Radulescu, VD .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (04) :521-534
[9]  
Dautray R., 1987, ANAL MATH CALCUL NUM, V2
[10]  
Garabedian PR., 1951, Pac. J. Math, V1, P485, DOI [10.2140/pjm.1951.1.485, DOI 10.2140/PJM.1951.1.485]