PENALIZED MAXIMUM LIKELIHOOD ESTIMATION AND VARIABLE SELECTION IN GEOSTATISTICS

被引:49
作者
Chu, Tingjin [1 ]
Zhu, Jun [2 ,3 ]
Wang, Haonan [1 ]
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Covariance tapering; Gaussian process; model selection; one-step sparse estimation; SCAD; spatial linear model; COVARIANCE; REGRESSION; SHRINKAGE;
D O I
10.1214/11-AOS919
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of selecting covariates ill spatial linear models with Gaussian process errors. Penalized maximum likelihood estimation (PMLE) that enables simultaneous variable selection and parameter estimation is developed and, for ease of computation, PMLE is approximated by one-step sparse estimation (OSE). To further improve computational efficiency, particularly with large sample sizes, we propose penalized maximum covariance-tapered likelihood estimation (PMLET) and its one-step sparse estimation (OSET). General forms of penalty functions with an emphasis on smoothly clipped absolute deviation are used for penalized maximum likelihood. Theoretical properties of PMLE and USE, as well as their approximations PMLET and OSET using covariance tapering, are derived, including consistency, sparsity, asymptotic normality and the oracle properties. For covariance tapering, a by-product of our theoretical results is consistency and asymptotic normality of maximum covariance-tapered likelihood estimates. Finite-sample properties of the proposed methods are demonstrated in a simulation study and, for illustration, the methods are applied to analyze two real data sets.
引用
收藏
页码:2607 / 2625
页数:19
相关论文
共 24 条
[1]  
[Anonymous], 1999, INTERPOLATION SPATIA
[2]  
Cressie N., 1993, Statistics for Spatial Data, DOI [10.1002/9781119115151, DOI 10.1002/9781119115151]
[3]  
Draper N. R., 1998, APPL REGRESSION ANAL, DOI DOI 10.1002/9781118625590.CH15
[4]   FIXED-DOMAIN ASYMPTOTIC PROPERTIES OF TAPERED MAXIMUM LIKELIHOOD ESTIMATORS [J].
Du, Juan ;
Zhang, Hao ;
Mandrekar, V. S. .
ANNALS OF STATISTICS, 2009, 37 (6A) :3330-3361
[5]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[6]  
Fan J., 1997, J. Italian Stat. Soc, V6, P131, DOI [10.1007/BF03178906, DOI 10.1007/BF03178906]
[7]   Nonconcave penalized likelihood with a diverging number of parameters [J].
Fan, JQ ;
Peng, H .
ANNALS OF STATISTICS, 2004, 32 (03) :928-961
[8]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[9]   Covariance tapering for interpolation of large spatial datasets [J].
Furrer, Reinhard ;
Genton, Marc G. ;
Nychka, Douglas .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (03) :502-523
[10]   Model selection for geostatistical models [J].
Hoeting, JA ;
Davis, RA ;
Merton, AA ;
Thompson, SE .
ECOLOGICAL APPLICATIONS, 2006, 16 (01) :87-98