A generalization of Kneser's conjecture

被引:7
作者
Hajiabolhassan, Hossein [1 ,2 ]
机构
[1] Shahid Beheshti Univ, Dept Math Sci, GC, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
Graph colorings; The Borsuk-Ulam theorem; Tucker-Ky Fan's lemma; CIRCULAR CHROMATIC NUMBER; PROOF;
D O I
10.1016/j.disc.2011.08.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate some coloring properties of Kneser graphs. A semi-matching coloring is a proper coloring c : V (G) -> N such that for any two consecutive colors, the edges joining the colors form a matching. The minimum positive integer t for which there exists a semi-matching coloring c : V (G) -> {1,2, ... , t} is called the semi-matching chromatic number of G and denoted by chi(m)(G). In view of Tucker-Ky Fan's lemma, we show that chi(m)(KG(n, k)) = 2 chi(KG(n, k)) - 2 = 2n - 4k + 2 provided that n <= 8/3k. This gives a partial answer to a conjecture of Omoomi and Pourmiri [Local coloring of Kneser graphs, Discrete Mathematics, 308 (24): 5922-5927, (2008)]. Moreover, for any Kneser graph KG(n, k), we show that chi(m)(KG(n, k)) >= max(2 chi(KG(n, k)) - 10, chi(KG(n, k))), where n >= 2k >= 4. Also, for n >= 2k >= 4, we conjecture that chi(m)(KG(n, k)) = 2 chi(KG(n, k)) - 2. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2663 / 2668
页数:6
相关论文
共 22 条
[1]   Circular coloring and Mycielski construction [J].
Alishahi, Meysam ;
Hajiabolhassan, Hossein .
DISCRETE MATHEMATICS, 2010, 310 (10-11) :1544-1550
[2]  
[Anonymous], 2003, USING BORSUK ULAM TH
[3]  
Chartrand G, 2005, UTILITAS MATHEMATICA, V67, P107
[4]  
CHARTRAND G, 2003, P 34 SE INT C COMB G, V163, P207
[5]   A new coloring theorem of Kneser graphs [J].
Chen, Peng-An .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) :1062-1071
[6]  
Fan Ky, 1952, Annals of Mathematics, V56, P431
[7]   Circular chromatic number of Kneser graphs [J].
Hajiabolhassan, H ;
Zhu, X .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (02) :299-303
[8]  
Hajiabolhassan H, 2010, ELECTRON J COMB, V17
[9]   SOME INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
HILTON, AJW ;
MILNER, EC .
QUARTERLY JOURNAL OF MATHEMATICS, 1967, 18 (72) :369-&
[10]  
Kneser M., 1955, Math. Z., V61, P429