Expansion of the Kronecker and Keyhole Channels Into Spherical Vector Wave Modes

被引:2
|
作者
Glazunov, Andres Alayon [1 ]
机构
[1] KTH Royal Inst Technol, Div Electromagnet Engn, Sch Elect Engn, S-10044 Stockholm, Sweden
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2011年 / 10卷
关键词
Keyhole channel; Kronecker channel; spatio-polar characterization; spherical vector wave expansion; ANTENNAS; SYSTEMS;
D O I
10.1109/LAWP.2011.2170951
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, we provide additional results on the expansion of wireless channels into spherical vector wave multipole modes. We specialize our results to multiple-input-multiple-output (MIMO) channels with Kronecker-product structure of the correlation matrix: 1) the Kronecker channel, and 2) the Keyhole channel. We show that the Kronecker or Keyhole structure of the multimode channel matrix implies the corresponding structure in the MIMO channel matrix. Moreover, we show that the separability of the joint probability distribution functions of the angle of arrival (AoA) and the angle of departure (AoD), i.e., the independence between the AoAs and the AoDs for co- and cross-polarized components results in a Kronecker-product structure of the full-correlation matrix of the multimode matrix for both the Kronecker and the Keyhole channels.
引用
收藏
页码:1112 / 1115
页数:4
相关论文
共 50 条
  • [1] The Weyl expansion for the scalar and vector spherical wave functions
    Balandin, A. L.
    Kaneko, A.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (16) : 12787 - 12799
  • [2] Physical modelling of multiple-input multiple-output antennas and channels by means of the spherical vector wave expansion
    Glazunov, A. A.
    Gustafsson, M.
    Molisch, A. F.
    Tufvesson, F.
    IET MICROWAVES ANTENNAS & PROPAGATION, 2010, 4 (06) : 778 - 791
  • [3] Approximate expansion of a narrow Gaussian beam in spherical vector wave functions
    Gardner, Judd S.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (11) : 3172 - 3177
  • [4] MATLAB-Based Fast Vector Spherical Wave Expansion Implementation
    Mahfouz, Abdullah Muhammad
    Kishk, Ahmed A.
    2024 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND INC/USNCURSI RADIO SCIENCE MEETING, AP-S/INC-USNC-URSI 2024, 2024, : 1333 - 1334
  • [5] Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions
    Moreira, Wendel Lopes
    Ranha Neves, Antonio Alvaro
    Garbos, Martin K.
    Euser, Tijmen G.
    Cesar, Carlos Lenz
    OPTICS EXPRESS, 2016, 24 (03): : 2370 - 2382
  • [6] Fast Analysis of Spherical Metasurfaces Using Vector Wave Function Expansion
    Sandeep, Srikumar
    Huang, Shao Ying
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (06): : 1086 - 1090
  • [7] Vector wave expansion method for leaky modes of microstructured optical fibers
    Issa, NA
    Poladian, L
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2003, 21 (04) : 1005 - 1012
  • [8] Radiation Modes Investigation of Huygens Source Type Antenna Using Spherical Wave Expansion
    Kadddour, Abdul Sattar
    Bories, Serge
    Clemente, Antonio
    Bellion, Anthony
    Delaveaud, Christophe
    2016 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), 2016, : 664 - 665
  • [9] SPHERICAL WAVE EXPANSION TECHNIQUE
    RENGARAJAN, SR
    IEE PROCEEDINGS-H MICROWAVES ANTENNAS AND PROPAGATION, 1993, 140 (06) : 511 - 512
  • [10] Explicit Conversion Formulas Between Spherical Wave Expansions With Scalar and Vector Expansion Coefficients
    Knapp, Josef
    Eibert, Thomas F.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (01) : 752 - 762