Existence and Uniqueness Results for Quasilinear Parabolic Systems in Orlicz Spaces

被引:4
作者
Balaadich, Farah [1 ]
Azroul, Elhoussine [1 ]
机构
[1] Fac Sci Dhar El Mehraz, BP 1796, Atlas, Fez, Morocco
关键词
Orlicz-Sobolev spaces; Quasilinear parabolic systems; Monotone operator; Young measure; EQUATIONS;
D O I
10.1007/s10883-019-09447-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
yy We establish an existence and uniqueness result for quasilinear parabolic systems of the form partial derivative u/partial derivative t - div sigma(x, t, Du) = f in Q, where the source term f is assumed to be in W--1,W-x E-(M) over bar(Q; R-m). The proof is based on the theory of Young measures which permits to identify weak limits.
引用
收藏
页码:407 / 421
页数:15
相关论文
共 27 条
[11]   Parabolic equations in Orlicz spaces [J].
Elmahi, A ;
Meskine, D .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 :410-428
[12]   SOME APPROXIMATION PROPERTIES IN ORLICZ-SOBOLEV SPACES [J].
GOSSEZ, JP .
STUDIA MATHEMATICA, 1982, 74 (01) :17-24
[13]   NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS FOR EQUATIONS WITH RAPIDLY (OR SLOWLY) INCREASING COEFFICIENTS [J].
GOSSEZ, JP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 190 (463) :163-205
[14]  
Gwiazda P., 2011, PROGR NONLINEAR DIFF, V80, P301
[15]   Quasi-linear parabolic systems in divergence form with weak monotonicity [J].
Hungerbühler, N .
DUKE MATHEMATICAL JOURNAL, 2001, 107 (03) :497-520
[16]  
Hungerbuhler N, 2001, THESIS ETH ZURICH
[17]  
Hungerbuhler N., 1997, NEW YORK J MATH, V3, P48
[18]  
Kamke E., 1960, Das Lebesgue-Stieltjes-Integral
[19]  
Krasnoselskii M., 1969, Convex Functions and Orlicz Spaces
[20]  
Kufner A., 1977, FUNCTION SPACES