Qubit thermometry for micromechanical resonators

被引:95
作者
Brunelli, Matteo [1 ]
Olivares, Stefano [2 ,3 ]
Paris, Matteo G. A. [1 ,3 ]
机构
[1] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[2] Univ Trieste, Dipartimento Fis, I-34151 Trieste, Italy
[3] CNISM UdR Milano Statale, I-20133 Milan, Italy
来源
PHYSICAL REVIEW A | 2011年 / 84卷 / 03期
关键词
D O I
10.1103/PhysRevA.84.032105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We address estimation of temperature for a micromechanical oscillator lying arbitrarily close to its quantum ground state. Motivated by recent experiments, we assume that the oscillator is coupled to a probe qubit via Jaynes-Cummings interaction and that the estimation of its effective temperature is achieved via quantum-limited measurements on the qubit. We first consider the ideal unitary evolution in a noiseless environment and then take into account the noise due to nondissipative decoherence. We exploit local quantum estimation theory to assess and optimize the precision of estimation procedures based on the measurement of qubit population and to compare their performances with the ultimate limit posed by quantum mechanics. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over the possible qubit preparations and interaction times, and compare its behavior with that of the quantum Fisher information (QFI). We found that the FI for population measurement is equal to the QFI, i.e., population measurement is optimal, for a suitable initial preparation of the qubit and a predictable interaction time. The same configuration also corresponds to the maximum of the QFI itself. Our results indicate that the achievement of the ultimate bound to precision allowed by quantum mechanics is in the capabilities of the current technology.
引用
收藏
页数:9
相关论文
共 42 条
[31]   Optimal quantum estimation of loss in bosonic channels [J].
Monras, Alex ;
Paris, Matteo G. A. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[32]   Quantum ground state and single-phonon control of a mechanical resonator [J].
O'Connell, A. D. ;
Hofheinz, M. ;
Ansmann, M. ;
Bialczak, Radoslaw C. ;
Lenander, M. ;
Lucero, Erik ;
Neeley, M. ;
Sank, D. ;
Wang, H. ;
Weides, M. ;
Wenner, J. ;
Martinis, John M. ;
Cleland, A. N. .
NATURE, 2010, 464 (7289) :697-703
[33]   Bayesian estimation in homodyne interferometry [J].
Olivares, Stefano ;
Paris, Matteo G. A. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2009, 42 (05)
[34]   QUANTUM ESTIMATION FOR QUANTUM TECHNOLOGY [J].
Paris, Matteo G. A. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 :125-137
[35]   Reconstructing the dynamics of a movable mirror in a detuned optical cavity [J].
Paternostro, M. ;
Gigan, S. ;
Kim, M. S. ;
Blaser, F. ;
Boehm, H. R. ;
Aspelmeyer, M. .
NEW JOURNAL OF PHYSICS, 2006, 8
[36]   Measuring nanomechanical motion with a microwave cavity interferometer [J].
Regal, C. A. ;
Teufel, J. D. ;
Lehnert, K. W. .
NATURE PHYSICS, 2008, 4 (07) :555-560
[37]   Preparation and detection of a mechanical resonator near the ground state of motion [J].
Rocheleau, T. ;
Ndukum, T. ;
Macklin, C. ;
Hertzberg, J. B. ;
Clerk, A. A. ;
Schwab, K. C. .
NATURE, 2010, 463 (7277) :72-75
[38]   Optimal estimation of one-parameter quantum channels [J].
Sarovar, Mohan ;
Milburn, G. J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (26) :8487-8505
[39]   Resolved-sideband cooling of a micromechanical oscillator [J].
Schliesser, A. ;
Riviere, R. ;
Anetsberger, G. ;
Arcizet, O. ;
Kippenberg, T. J. .
NATURE PHYSICS, 2008, 4 (05) :415-419
[40]   Detection of Qubit-Oscillator Entanglement in Nanoelectromechanical Systems [J].
Schmidt, Thomas L. ;
Borkje, Kjetil ;
Bruder, Christoph ;
Trauzettel, Bjoern .
PHYSICAL REVIEW LETTERS, 2010, 104 (17)