Lagrangian-Hamiltonian unified formalism for field theory

被引:33
作者
Echeverría-Enríquez, A
López, C
Marín-Solano, J
Muñoz-Lecanda, MC
Román-Roy, N
机构
[1] Dept Matemat Aplicada 4, Edificio C3, E-08034 Barcelona, Spain
[2] Fac Ciencias, Dept Matemat, Alcala De Henares 28871, Spain
[3] Dept Matemat Econ Financiera & Actuarial, E-08034 Barcelona, Spain
关键词
D O I
10.1063/1.1628384
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Rusk-Skinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems (including dynamical equations and solutions, constraints, Legendre map, evolution operators, equivalence, etc.). In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for partial differential equations. (C) 2004 American Institute of Physics.
引用
收藏
页码:360 / 380
页数:21
相关论文
共 50 条
[22]   BRST-extended polysymplectic Hamiltonian formalism for field theory [J].
Giachetta, G ;
Mangiarotti, L ;
Sardanashvily, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1999, 114 (08) :939-955
[23]   MULTIMOMENTUM HAMILTONIAN-FORMALISM IN QUANTUM-FIELD THEORY [J].
SARDANASHVILY, GA .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1994, 33 (12) :2365-2379
[24]   GENERALIZED HAMILTONIAN FORMULATION OF A STRICTLY LOCALIZABLE LAGRANGIAN FIELD THEORY [J].
Kasymzhanov, M. A. ;
Khodzhaev, L. Sh .
THEORETICAL AND MATHEMATICAL PHYSICS, 1973, 16 (02) :783-790
[26]   LAGRANGIAN-HAMILTONIAN FORMULATION FOR STATIONARY FLOWS OF SOME CLASS OF NONLINEAR DYNAMIC-SYSTEMS [J].
BLASZAK, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (05) :L263-L265
[27]   Lagrangian theory of Hamiltonian reduction [J].
Gonera, C ;
Kosinski, P .
ACTA PHYSICA POLONICA B, 2003, 34 (08) :3977-3986
[28]   Hamiltonian and Lagrangian theory of viscoelasticity [J].
A. Hanyga ;
M. Seredyńska .
Continuum Mechanics and Thermodynamics, 2008, 19
[29]   Hamiltonian and Lagrangian theory of viscoelasticity [J].
Hanyga, A. ;
Seredynska, M. .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2008, 19 (08) :475-492
[30]   RELATIVISTIC HAMILTONIAN FORMALISM IN QUANTUM FIELD THEORY AND MICRO-NONCAUSALITY [J].
ENATSU, H .
PROGRESS OF THEORETICAL PHYSICS, 1963, 30 (02) :236-264