Lagrangian-Hamiltonian unified formalism for field theory

被引:33
作者
Echeverría-Enríquez, A
López, C
Marín-Solano, J
Muñoz-Lecanda, MC
Román-Roy, N
机构
[1] Dept Matemat Aplicada 4, Edificio C3, E-08034 Barcelona, Spain
[2] Fac Ciencias, Dept Matemat, Alcala De Henares 28871, Spain
[3] Dept Matemat Econ Financiera & Actuarial, E-08034 Barcelona, Spain
关键词
D O I
10.1063/1.1628384
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Rusk-Skinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems (including dynamical equations and solutions, constraints, Legendre map, evolution operators, equivalence, etc.). In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for partial differential equations. (C) 2004 American Institute of Physics.
引用
收藏
页码:360 / 380
页数:21
相关论文
共 50 条
[11]   Parameter invariance in field theory and the Hamiltonian formalism [J].
Masqué, JM ;
Coronado, LMP .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (04) :361-405
[12]   LAGRANGIAN-HAMILTONIAN FORMALISM FOR GRAVITATIONAL 2-BODY PROBLEM WITH SPIN AND PARAMETRIZED POST-NEWTONIAN PARAMETERS GAMMA AND BETA [J].
BARKER, BM ;
OCONNELL, RF .
PHYSICAL REVIEW D, 1976, 14 (04) :861-869
[13]   Generalization of the extended Lagrangian formalism on a field theory and applications [J].
Deriglazov, A. A. ;
Rizzuti, B. F. .
PHYSICAL REVIEW D, 2011, 83 (12)
[14]   A UNIFIED FORMALISM OF THERMAL QUANTUM-FIELD THEORY [J].
CHU, H ;
UMEZAWA, H .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (14) :2363-2409
[15]   ON LAGRANGIAN AND HAMILTONIAN FORMALISM FOR NON CONSERVATIVE FORCES [J].
SONA, PG .
ENERGIA NUCLEARE, 1966, 13 (06) :318-&
[16]   Lagrangian and Hamiltonian formalism for constrained variational problems [J].
Piccione, P ;
Tausk, DV .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 :1417-1437
[17]   AMBIGUITIES IN LAGRANGIAN AND HAMILTONIAN FORMALISM - TRANSFORMATION PROPERTIES [J].
MARMO, G ;
SALETAN, EJ .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1977, 40 (01) :67-89
[18]   LAGRANGIAN AND HAMILTONIAN-FORMALISM ON A QUANTUM PLANE [J].
LUKIN, M ;
STERN, A ;
YAKUSHIN, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (19) :5115-5131
[19]   A geometric approach to the Lagrangian and Hamiltonian formalism of electrodynamics [J].
Kulyabov, D. S. ;
Korolkova, A. V. ;
Sevastianov, L. A. ;
Eferina, E. G. ;
Velieva, T. R. .
SARATOV FALL MEETING 2016 - LASER PHYSICS AND PHOTONICS XVII; AND COMPUTATIONAL BIOPHYSICS AND ANALYSIS OF BIOMEDICAL DATA III, 2017, 10337
[20]   Entropic Balance Theory and Variational Field Lagrangian Formalism: Tornadogenesis [J].
Sasaki, Yoshi K. .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2014, 71 (06) :2104-2113