Increasing the solar cell power output by coating with transition metal-oxide nanorods

被引:29
作者
Kuznetsov, I. A. [1 ]
Greenfield, M. J. [1 ]
Mehta, Y. U. [1 ]
Merchan-Merchan, W. [2 ]
Salkar, G. [1 ]
Saveliev, A. V. [1 ]
机构
[1] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA
[2] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
Silicon solar cell; Light scattering; Nanoparticles; Transition metal-oxide nanorods; FLAME SYNTHESIS; NANOPARTICLES;
D O I
10.1016/j.apenergy.2011.04.033
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Photovoltaic cells produce electric current through interactions among photons from an ambient light source and electrons in the semiconductor layer of the cell. However, much of the light incident on the panel is reflected or absorbed without inducing the photovoltaic effect. Transition metal-oxide nanoparticles, an inexpensive product of a process called flame synthesis, can cause scattering of light. Scattering can redirect photon flux, increasing the fraction of light absorbed in the thin active layer of silicon solar cells. This research aims to demonstrate that the application of transition metal-oxide nanorods to the surface of silicon solar panels can enhance the power output of the panels. Several solar panels were coated with a nanoparticle-methanol suspension, and the power outputs of the panels before and after the treatment were compared. The results demonstrate an increase in power output of up to 5% after the treatment. The presence of metal-oxide nanorods on the surface of the coated solar cells is confirmed by electron microscopy. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4218 / 4221
页数:4
相关论文
共 14 条
  • [1] Linear and nonlinear optical properties of gold nanospheres immobilized on a metallic surface
    Abe, Shinya
    Kajikawa, Kotaro
    [J]. PHYSICAL REVIEW B, 2006, 74 (03)
  • [2] Plasmon Dispersion in Coaxial Waveguides from Single-Cavity Optical Transmission Measurements
    de Waele, Rene
    Burgos, Stanley P.
    Polman, Albert
    Atwater, Harry A.
    [J]. NANO LETTERS, 2009, 9 (08) : 2832 - 2837
  • [3] Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles
    Derkacs, D.
    Lim, S. H.
    Matheu, P.
    Mar, W.
    Yu, E. T.
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (09)
  • [4] Temperature and carbon source effects on methane-air flame synthesis of CNTs
    Li, T. X.
    Kuwana, K.
    Saito, K.
    Zhang, H.
    Chen, Z.
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2009, 32 : 1855 - 1861
  • [5] Enhanced infrared response of ultra thin amorphous silicon photosensitive devices with Ag nanoparticles
    Luo, P. Q.
    Moulin, E.
    Sukmanowski, J.
    Royer, F. X.
    Dou, X. M.
    Stiebig, H.
    [J]. THIN SOLID FILMS, 2009, 517 (23) : 6256 - 6259
  • [6] Flame synthesis of molybdenum oxide whiskers
    Merchan-Merchan, W
    Saveliev, AV
    Kennedy, LA
    [J]. CHEMICAL PHYSICS LETTERS, 2006, 422 (1-3) : 72 - 77
  • [7] High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control
    Merchan-Merchan, W
    Saveliev, AV
    Kennedy, LA
    [J]. CARBON, 2004, 42 (03) : 599 - 608
  • [8] Flame synthesis of hybrid nanowires with carbon shells and tungsten-oxide cores
    Merchan-Merchan, Wilson
    Saveliev, Alexei V.
    Jimenez, Walmy Cuello
    Salkar, Gautam
    [J]. CARBON, 2010, 48 (15) : 4510 - 4518
  • [9] Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells
    Mokkapati, S.
    Beck, F. J.
    Polman, A.
    Catchpole, K. R.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (05)
  • [10] Thin-film silicon solar cells with integrated silver nanoparticles
    Moulin, E.
    Sukmanowski, J.
    Schulte, M.
    Gordijn, A.
    Royer, F. X.
    Stiebig, H.
    [J]. THIN SOLID FILMS, 2008, 516 (20) : 6813 - 6817