Characterizations of Morrey type Besov and Triebel-Lizorkin spaces with variable exponents

被引:33
作者
Fu, Jingjing [1 ]
Xu, Jingshi [1 ]
机构
[1] Hainan Normal Univ, Dept Math, Haikou 571158, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable exponent; Morrey space; Besov space; Triebel-Lizorkin space; Equivalent norm; Maximal function; Atom; Molecule; Wavelet; MAXIMAL-FUNCTION; 2-MICROLOCAL BESOV; NAVIER-STOKES; DECOMPOSITION; SMOOTHNESS; EQUATIONS;
D O I
10.1016/j.jmaa.2011.02.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, Morrey type Besov and Triebel-Lizorkin spaces with variable exponents are introduced. Then equivalent quasi-norms of these new spaces in terms of Peetre's maximal functions are obtained. Finally, applying those equivalent quasi-norms, the authors obtain the atomic, molecular and wavelet decompositions of these new spaces. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:280 / 298
页数:19
相关论文
共 50 条
  • [21] Characterizations of Besov and Triebel-Lizorkin spaces on metric measure spaces
    Gogatishvili, Amiran
    Koskela, Pekka
    Zhou, Yuan
    FORUM MATHEMATICUM, 2013, 25 (04) : 787 - 819
  • [22] Pointwise characterizations of variable Besov and Triebel-Lizorkin spaces via Hajłasz gradients
    Yu He
    Qi Sun
    Ciqiang Zhuo
    Fractional Calculus and Applied Analysis, 2024, 27 : 944 - 969
  • [23] Weighted Bourgain-Morrey-Besov-Triebel-Lizorkin spaces associated with operators
    Bai, Tengfei
    Xu, Jingshi
    MATHEMATISCHE NACHRICHTEN, 2025, 298 (03) : 886 - 924
  • [24] Weighted Bourgain-Morrey-Besov-Triebel-Lizorkin spaces associated with operators
    Bai, Tengfei
    Xu, Jingshi
    MATHEMATISCHE NACHRICHTEN, 2025,
  • [25] Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings
    Koskela, Pekka
    Yang, Dachun
    Zhou, Yuan
    ADVANCES IN MATHEMATICS, 2011, 226 (04) : 3579 - 3621
  • [26] Wavelet characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and its applications
    He, Ziyi
    Wang, Fan
    Yang, Dachun
    Yuan, Wen
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 54 (54) : 176 - 226
  • [27] FRANKE-JAWERTH EMBEDDINGS FOR BESOV AND TRIEBEL-LIZORKIN SPACES WITH VARIABLE EXPONENTS
    Goncalves, Helena F.
    Kempka, Henning
    Vybiral, Jan
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 187 - 209
  • [28] THE BOUNDEDNESS OF BILINEAR PSEUDODIFFERENTIAL OPERATORS IN TRIEBEL-LIZORKIN AND BESOV SPACES WITH VARIABLE EXPONENTS
    Liu, Yin
    Wang, Lushun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (02) : 529 - 540
  • [29] Quarklet characterizations for Triebel-Lizorkin spaces
    Hovemann, Marc
    Dahlke, Stephan
    JOURNAL OF APPROXIMATION THEORY, 2023, 295
  • [30] Decompositions of non-homogeneous Herz-type Besov and Triebel-Lizorkin spaces
    Xu JingShi
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (02) : 315 - 331