Enhanced conversion efficiency in Si solar cells employing photoluminescent down-shifting CdSe/CdS core/shell quantum dots

被引:43
作者
Lopez-Delgado, R. [1 ,2 ]
Zhou, Y. [3 ]
Zazueta-Raynaud, A. [1 ,2 ]
Zhao, H. [3 ]
Pelayo, J. E. [1 ,4 ]
Vomiero, A. [5 ]
Alvarez-Ramos, M. E. [2 ]
Rosei, F. [3 ]
Ayon, A. [1 ]
机构
[1] Univ Texas San Antonio, Dept Phys & Astron, MEMS Res Lab, San Antonio, TX 78249 USA
[2] Univ Sonora, Dept Fis, Hermosillo 83000, Sonora, Mexico
[3] INRS Ctr Energy Mat & Telecommun, Varennes, PQ J3X 1P7, Canada
[4] Univ Guadalajara, Ctr Ciencias Exactas & Ingn, Guadalajara 44430, Jalisco, Mexico
[5] Lulea Univ Technol, S-97187 Lulea, Sweden
基金
加拿大自然科学与工程研究理事会;
关键词
ABSORPTION ENHANCEMENT; SILICON NANOCRYSTALS; OPTICAL-ABSORPTION; PERFORMANCE; SPECTRUM;
D O I
10.1038/s41598-017-14269-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Silicon solar cells have captured a large portion of the total market of photovoltaic devices mostly due to their relatively high efficiency. However, Silicon exhibits limitations in ultraviolet absorption because high-energy photons are absorbed at the surface of the solar cell, in the heavily doped region, and the photo-generated electron-hole pairs need to diffuse into the junction region, resulting in significant carrier recombination. One of the alternatives to improve the absorption range involves the use of down-shifting nano-structures able to interact with the aforementioned high energy photons. Here, as a proof of concept, we use downshifting CdSe/CdS quantum dots to improve the performance of a silicon solar cell. The incorporation of these nanostructures triggered improvements in the short circuit current density (J(sc), from 32.5 to 37.0 mA/cm(2)). This improvement led to a similar to 13% increase in the power conversion efficiency (PCE), from 12.0 to 13.5%. Our results demonstrate that the application of down-shifting materials is a viable strategy to improve the efficiency of Silicon solar cells with mass-compatible techniques that could serve to promote their widespread utilization.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature [J].
Albrecht, Steve ;
Saliba, Michael ;
Baena, Juan Pablo Correa ;
Lang, Felix ;
Kegelmann, Lukas ;
Mews, Mathias ;
Steier, Ludmilla ;
Abate, Antonio ;
Rappich, Joerg ;
Korte, Lars ;
Schlatmann, Rutger ;
Nazeeruddin, Mohammad Khaja ;
Hagfeldt, Anders ;
Graetzel, Michael ;
Rech, Bernd .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (01) :81-88
[2]  
Andersson BA, 2000, PROG PHOTOVOLTAICS, V8, P61, DOI 10.1002/(SICI)1099-159X(200001/02)8:1<61::AID-PIP301>3.0.CO
[3]  
2-6
[4]   Material constraints for thin-film solar cells [J].
Andersson, BA ;
Azar, C ;
Holmberg, J ;
Karlsson, S .
ENERGY, 1998, 23 (05) :407-411
[5]   Material considerations for terawatt level deployment of photovoltaics [J].
Feltrin, Andrea ;
Freundlich, Alex .
RENEWABLE ENERGY, 2008, 33 (02) :180-185
[6]   Light Trapping in Silicon Nanowire Solar Cells [J].
Garnett, Erik ;
Yang, Peidong .
NANO LETTERS, 2010, 10 (03) :1082-1087
[7]   New Insights into the Complexities of Shell Growth and the Strong Influence of Particle Volume in Nonblinking "Giant" Core/Shell Nanocrystal Quantum Dots [J].
Ghosh, Yagnaseni ;
Mangum, Benjamin D. ;
Casson, Joanna L. ;
Williams, Darrick J. ;
Htoon, Han ;
Hollingsworth, Jennifer A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (23) :9634-9643
[8]  
Govoni M, 2012, NAT PHOTONICS, V6, P672, DOI [10.1038/nphoton.2012.206, 10.1038/NPHOTON.2012.206]
[9]   Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics [J].
Han, Sang Eon ;
Chen, Gang .
NANO LETTERS, 2010, 10 (03) :1012-1015
[10]   Fundamental losses in solar cells [J].
Hirst, Louise C. ;
Ekins-Daukes, Nicholas J. .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (03) :286-293