On Estimation of Nonlinear Functionals from Discrete Noisy Measurements

被引:1
|
作者
Song, Il Young [1 ]
Shin, Vladimir [2 ]
Choi, Won [3 ]
机构
[1] Hanwha Corp R&D Ctr, Dept Sensor Syst, 52-1 Oesam Dong, Daejeon 305106, South Korea
[2] Gyeongsang Natl Univ, Res Inst Nat Sci, Dept Informat & Stat, 501 Jinjudaero, Jinju 660701, Gyeongsangnam D, South Korea
[3] Incheon Natl Univ, Dept Math, 119 Acad Ro, Incheon 406772, South Korea
关键词
Estimation; Kalman filtering; nonlinear functional; quadratic functional; stochastic system; ADAPTIVE ESTIMATION; SYSTEMS;
D O I
10.1007/s12555-016-0382-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The principal objective of this paper is to estimate a nonlinear functional of state vector (NFS) in dynamical system. The NFS represents a multivariate functional of state variables which carries useful information of a target system for control. The paper focuses on estimation of the NFS in linear continuous-discrete systems. The optimal nonlinear estimator based on the minimum mean square error approach is derived. The estimator depends on the Kalman estimate of a state vector and its error covariance. Some challenging computational aspects of the optimal nonlinear estimator are solved by usage of the unscented transformation for implementation of the nonlinear estimator. The special quadratic functional of state vector (QFS) is studied in detail. We derive effective matrix formulas for the optimal quadratic estimator and mean square error. The quadratic estimator has a simple closed-form calculation procedure and it is easy to implement in practice. The obtained results we demonstrate on theoretical and practical examples with different types of an nonlinear functionals. Comparison analysis of the optimal and suboptimal estimators is presented. The subsequent application of the proposed optimal nonlinear and quadratic estimators demonstrates their effectiveness.
引用
收藏
页码:2109 / 2117
页数:9
相关论文
共 50 条
  • [21] Maximum Likelihood-Based Iterated Divided Difference Filter for Nonlinear Systems from Discrete Noisy Measurements
    Wang, Changyuan
    Zhang, Jing
    Mu, Jing
    SENSORS, 2012, 12 (07) : 8912 - 8929
  • [22] Estimation of tangents to a noisy discrete curve
    Debled-Rennesson, I
    VISION GEOMETRY XII, 2004, 5300 : 117 - 126
  • [23] Parameter estimation for nonlinear time-delay systems with noisy output measurements
    Lin, Qun
    Loxton, Ryan
    Xu, Chao
    Teo, Kok Lay
    AUTOMATICA, 2015, 60 : 48 - 56
  • [24] Estimation of linear functionals from indirect noisy data without knowledge of the noise level
    Pereverzev S.V.
    Hofmann B.
    GEM - International Journal on Geomathematics, 2010, 1 (01) : 121 - 131
  • [25] On nonparametric kernel estimation of nonlinear functionals
    Ryumkin, VI
    Korus 2004, Vol 2, Proceedings, 2004, : 172 - 174
  • [26] Estimation of Nonlinear Functionals of Densities With Confidence
    Sricharan, Kumar
    Raich, Raviv
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (07) : 4135 - 4159
  • [27] Maximum Likelihood Estimation of Functionals of Discrete Distributions
    Jiao, Jiantao
    Venkat, Kartik
    Han, Yanjun
    Weissman, Tsachy
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) : 6774 - 6798
  • [28] LATTICE PARAMETER ESTIMATION FROM MULTIVARIATE SPARSE, NOISY MEASUREMENTS
    Quinn, Barry G.
    Clarkson, I. Vaughan L.
    2017 IEEE 18TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2017,
  • [29] Estimation of modal decay parameters from noisy response measurements
    Karjalainen, M
    Antsalo, P
    Mäkivirta, A
    Peltonen, T
    Välimäki, V
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2002, 50 (11): : 867 - 878
  • [30] ESTIMATION OF FRACTAL SIGNALS FROM NOISY MEASUREMENTS USING WAVELETS
    WORNELL, GW
    OPPENHEIM, AV
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (03) : 611 - 623