Exact diagonalization of 1D interacting spinless Fermions

被引:2
作者
Kohler, Heiner [1 ]
机构
[1] Univ Duisburg Essen, Fak Phys, D-47057 Duisburg, Germany
关键词
MANY-BODY PROBLEM; STATE WAVE-FUNCTION; ONE-DIMENSION; INTEGRABLE SYSTEMS; OPERATOR;
D O I
10.1063/1.3563580
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We acquire a method of constructing an infinite set of exact eigenfunctions of 1D interacting spinless Fermionic systems. Creation and annihilation operators for the interacting system are found and thereby themany-body Hamiltonian is diagonalized. The formalism is applied to several examples. One example is the theory of Jack polynomials. For the Calogero-Moser-Sutherland Hamiltonian a direct proof is given that the asymptotic Bethe ansatz is correct. (C) 2011 American Institute of Physics. [doi:10.1063/1.3563580]
引用
收藏
页数:24
相关论文
共 42 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   A SHORT PROOF OF SELBERGS GENERALIZED BETA-FORMULA [J].
ANDERSON, GW .
FORUM MATHEMATICUM, 1991, 3 (04) :415-417
[3]  
BAXTER R, 1989, EXACTLY SOLVED PROBL
[4]   Some properties of angular integrals [J].
Bergere, M. ;
Eynard, B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (26)
[5]   Metal theory [J].
Bethe, H. .
ZEITSCHRIFT FUR PHYSIK, 1931, 71 (3-4) :205-226
[6]   Characteristic polynomials of real symmetric random matrices [J].
Brézin, E ;
Hikami, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (02) :363-382
[7]   ONE-DIMENSIONAL MANY-BODY PROBLEMS WITH PAIR INTERACTIONS WHOSE EXACT GROUND-STATE WAVE-FUNCTION IS OF PRODUCT TYPE [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1975, 13 (13) :507-511
[8]   EXACTLY SOLVABLE ONE-DIMENSIONAL MANY-BODY PROBLEMS [J].
CALOGERO, F .
LETTERE AL NUOVO CIMENTO, 1975, 13 (11) :411-416
[9]   Zero temperature correlation functions for the impenetrable fermion gas [J].
Cheianov, VV ;
Zvonarev, MB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (06) :2261-2297
[10]   Nonunitary spin-charge separation in a one-dimensional fermion gas [J].
Cheianov, VV ;
Zvonarev, MB .
PHYSICAL REVIEW LETTERS, 2004, 92 (17) :176401-1