Autoencoders Without Reconstruction for Textural Anomaly Detection

被引:0
作者
Adey, Philip A. [1 ]
Akcay, Samet [3 ]
Bordewich, Magnus J. R. [1 ]
Breckon, Toby P. [1 ,2 ]
机构
[1] Univ Durham, Dept Comp Sci, Durham, England
[2] Univ Durham, Dept Engn, Durham, England
[3] Intel, Swindon, Wilts, England
来源
2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2021年
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/IJCNN52387.2021.9533804
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic anomaly detection in natural textures is a key component within quality control for a range of high-speed, high-yield manufacturing industries that rely on camera-based visual inspection techniques. Targeting anomaly detection through the use of autoencoder reconstruction error readily facilitates training on an often more plentiful set of non-anomalous samples, without the explicit need for a representative set of anomalous training samples that may be difficult to source. Unfortunately, autoencoders struggle to reconstruct high-frequency visual information and therefore, such approaches often fail to achieve a low enough reconstruction error for non-anomalous pixels. In this paper, we propose a new approach in which the autoencoder is trained to directly output the desired per-pixel measure of abnormality without first having to perform reconstruction. This is achieved by corrupting training samples with noise and then predicting how pixels need to be shifted so as to remove the noise. Our direct approach enables the model to compress anomaly scores for normal pixels into a tight bound close to zero, resulting in very clean anomaly segmentations that significantly improve performance. We also introduce the Reflected ReLU output activation function that better facilitates training under this direct regime by leaving values that fall within the image dynamic range unmodified. Overall, an average area under the ROC curve of 96% is achieved on the texture classes of the MVTecAD benchmark dataset, surpassing that achieved by all current state-of-the-art methods.
引用
收藏
页数:8
相关论文
共 29 条
[1]   GANomaly: Semi-supervised Anomaly Detection via Adversarial Training [J].
Akcay, Samet ;
Atapour-Abarghouei, Amir ;
Breckon, Toby P. .
COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 :622-637
[2]  
[Anonymous], 2016, INTERNATIONAL CONFER
[3]   Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images [J].
Baur, Christoph ;
Wiestler, Benedikt ;
Albarqouni, Shadi ;
Navab, Nassir .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 :161-169
[4]  
Bengio Y., 2013, Advances in Neural Information Processing Systems, P899
[5]  
BERGMANN P, 2019, INTERNATIONAL CONFER, P372
[6]   MVTec AD - A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection [J].
Bergmann, Paul ;
Fauser, Michael ;
Sattlegger, David ;
Steger, Carsten .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :9584-9592
[7]  
Bottger T., 2016, Pattern Recognition and Image Analysis, V26, P88
[8]  
DEHAENE D, 2020, INTERNATIONAL CONFER
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1