ON FOURIER COEFFICIENTS OF MODULAR FORMS

被引:0
作者
Cummins, C. J. [1 ]
Haghighi, N. S. [1 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fourier coefficients; modular forms; genus zero; moonshine; Hauptmodul; CONGRUENCE SUBGROUPS; DIVISORS; VALUES; MOONSHINE;
D O I
10.1017/S0004972710001887
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recursive formulae satisfied by the Fourier coefficients of meromorphic modular forms on groups of genus zero have been investigated by several authors. Bruinier et al. ['The arithmetic of the values of modular functions and the divisors of modular forms', Compositio Math. 140(3) (2004), 552-566] found recurrences for SL(2, Z); Ahlgren ['The theta-operator and the divisors of modular forms on genus zero subgroups', Math. Res. Lett. 10(5-6) (2003), 787-798] investigated the groups Gamma(0)(p); Atkinson ['Divisors of modular forms on Gamma(0) (4)', J. Number Theory 112(1) (2005), 189-204] considered Gamma(0)(4), and S. Y. Choi ['The values of modular functions and modular forms', Canad. Math. Bull. 49(4) (2006), 526-535] found the corresponding formulae for the groups Gamma(+)(0)(p). In this paper we generalize these results and find recursive formulae for the Fourier coefficients of any meromorphic modular form f on any genus-zero group Gamma commensurable with SL(2, Z), including noncongruence groups and expansions at irregular cusps. The form of the recurrence relations is well suited for the computation of the Fourier coefficients of the functions and forms on the groups which occur in monstrous and generalized moonshine. The required initial data has, in many cases, been computed by Norton (private communication).
引用
收藏
页码:50 / 62
页数:13
相关论文
共 25 条
[1]  
Ahlgren S, 2003, MATH RES LETT, V10, P787
[2]  
Alexander D., 1992, Groups, combinatorics geometry (Durham, 1990), V165, P87
[3]  
[Anonymous], 1971, KANO MEMORIAL LECT
[4]   Divisors of modular forms on Γ0(4) [J].
Atkinson, JR .
JOURNAL OF NUMBER THEORY, 2005, 112 (01) :189-204
[5]   MONSTROUS MOONSHINE AND MONSTROUS LIE-SUPERALGEBRAS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :405-444
[6]   Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions [J].
Bouali, A .
BULLETIN DES SCIENCES MATHEMATIQUES, 2006, 130 (01) :49-70
[7]   The arithmetic of the values of modular functions and the divisors of modular forms [J].
Bruinier, JH ;
Kohnen, W ;
Ono, K .
COMPOSITIO MATHEMATICA, 2004, 140 (03) :552-566
[8]   On values of a modular form on Γ0(N) [J].
Choi, D. .
ACTA ARITHMETICA, 2006, 121 (04) :299-311
[9]   The values of modular functions and modular forms [J].
Choi, So Young .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2006, 49 (04) :526-535
[10]  
Conway J., 1979, Bull. Lond. Math. Soc, V11, P308, DOI DOI 10.1112/BLMS/11.3.308