FCHL revisited: Faster and more accurate quantum machine learning

被引:224
作者
Christensen, Anders S. [1 ]
Bratholm, Lars A. [2 ,3 ]
Faber, Felix A. [1 ]
von Lilienfeld, O. Anatole [3 ]
机构
[1] Univ Basel, Natl Ctr Computat Design & Discovery Novel Mat MA, Inst Phys Chem, Dept Chem, Klingelbergstr 80, CH-4056 Basel, Switzerland
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[3] Univ Bristol, Sch Chem, Bristol BS8 ITS, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
MOLECULAR-DYNAMICS; POTENTIALS;
D O I
10.1063/1.5126701
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce the FCHL19 representation for atomic environments in molecules or condensed-phase systems. Machine learning models based on FCHL19 are able to yield predictions of atomic forces and energies of query compounds with chemical accuracy on the scale of milliseconds. FCHL19 is a revision of our previous work [F. A. Faber et al., J. Chem. Phys. 148, 241717 (2018)] where the representation is discretized and the individual features are rigorously optimized using Monte Carlo optimization. Combined with a Gaussian kernel function that incorporates elemental screening, chemical accuracy is reached for energy learning on the QM7b and QM9 datasets after training for minutes and hours, respectively. The model also shows good performance for non-bonded interactions in the condensed phase for a set of water clusters with a mean absolute error (MAE) binding energy error of less than 0.1 kcal/mol/molecule after training on 3200 samples. For force learning on the MD 17 dataset, our optimized model similarly displays state-of-the-art accuracy with a regressor based on Gaussian process regression. When the revised FCHL19 representation is combined with the operator quantum machine learning regressor, forces and energies can be predicted in only a few milliseconds per atom. The model presented herein is fast and lightweight enough for use in general chemistry problems as well as molecular dynamics simulations. (C) 2020 Author(s).Y
引用
收藏
页数:15
相关论文
共 68 条
[51]   Quantum chemistry structures and properties of 134 kilo molecules [J].
Ramakrishnan, Raghunathan ;
Dral, Pavlo O. ;
Rupp, Matthias ;
von Lilienfeld, O. Anatole .
SCIENTIFIC DATA, 2014, 1
[52]  
Ramakrislanan R., 2014, FIGSHARE
[53]   Extended-Connectivity Fingerprints [J].
Rogers, David ;
Hahn, Mathew .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (05) :742-754
[54]   Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17 [J].
Ruddigkeit, Lars ;
van Deursen, Ruud ;
Blum, Lorenz C. ;
Reymond, Jean-Louis .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2012, 52 (11) :2864-2875
[55]   Machine Learning for Quantum Mechanical Properties of Atoms in Molecules [J].
Rupp, Matthias ;
Ramakrishnan, Raghunathan ;
von Lilienfeld, O. Anatole .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (16) :3309-3313
[56]   Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning [J].
Rupp, Matthias ;
Tkatchenko, Alexandre ;
Mueller, Klaus-Robert ;
von Lilienfeld, O. Anatole .
PHYSICAL REVIEW LETTERS, 2012, 108 (05)
[57]   SchNet - A deep learning architecture for molecules and materials [J].
Schuett, K. T. ;
Sauceda, H. E. ;
Kindermans, P. -J. ;
Tkatchenko, A. ;
Mueller, K. -R. .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24)
[58]   SchNetPack: A Deep Learning Toolbox For Atomistic Systems [J].
Schutt, K. T. ;
Kessel, P. ;
Gastegger, M. ;
Nicoli, K. A. ;
Tkatchenko, A. ;
Muller, K. -R .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (01) :448-455
[59]  
Seeger Matthias, 2004, Int J Neural Syst, V14, P69, DOI 10.1142/S0129065704001899
[60]   ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost [J].
Smith, J. S. ;
Isayev, O. ;
Roitberg, A. E. .
CHEMICAL SCIENCE, 2017, 8 (04) :3192-3203