FCHL revisited: Faster and more accurate quantum machine learning

被引:224
作者
Christensen, Anders S. [1 ]
Bratholm, Lars A. [2 ,3 ]
Faber, Felix A. [1 ]
von Lilienfeld, O. Anatole [3 ]
机构
[1] Univ Basel, Natl Ctr Computat Design & Discovery Novel Mat MA, Inst Phys Chem, Dept Chem, Klingelbergstr 80, CH-4056 Basel, Switzerland
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[3] Univ Bristol, Sch Chem, Bristol BS8 ITS, Avon, England
基金
英国工程与自然科学研究理事会;
关键词
MOLECULAR-DYNAMICS; POTENTIALS;
D O I
10.1063/1.5126701
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce the FCHL19 representation for atomic environments in molecules or condensed-phase systems. Machine learning models based on FCHL19 are able to yield predictions of atomic forces and energies of query compounds with chemical accuracy on the scale of milliseconds. FCHL19 is a revision of our previous work [F. A. Faber et al., J. Chem. Phys. 148, 241717 (2018)] where the representation is discretized and the individual features are rigorously optimized using Monte Carlo optimization. Combined with a Gaussian kernel function that incorporates elemental screening, chemical accuracy is reached for energy learning on the QM7b and QM9 datasets after training for minutes and hours, respectively. The model also shows good performance for non-bonded interactions in the condensed phase for a set of water clusters with a mean absolute error (MAE) binding energy error of less than 0.1 kcal/mol/molecule after training on 3200 samples. For force learning on the MD 17 dataset, our optimized model similarly displays state-of-the-art accuracy with a regressor based on Gaussian process regression. When the revised FCHL19 representation is combined with the operator quantum machine learning regressor, forces and energies can be predicted in only a few milliseconds per atom. The model presented herein is fast and lightweight enough for use in general chemistry problems as well as molecular dynamics simulations. (C) 2020 Author(s).Y
引用
收藏
页数:15
相关论文
共 68 条
[1]   Training Neural Nets To Learn Reactive Potential Energy Surfaces Using Interactive Quantum Chemistry in Virtual Reality [J].
Amabilino, Silvia ;
Bratholm, Lars A. ;
Bennie, Simon J. ;
VaucherM, Alain C. ;
Reiher, Markus ;
Glowacki, David R. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (20) :4486-4499
[2]  
[Anonymous], 2017, Nature
[3]  
[Anonymous], 2008, OpenMP Application Program Interface
[4]   Interaction of the van der Waals type between three atoms [J].
Axilrod, BM ;
Teller, E .
JOURNAL OF CHEMICAL PHYSICS, 1943, 11 (06) :299-300
[5]   Gaussian approximation potentials: A brief tutorial introduction [J].
Bartok, Albert P. ;
Csanyi, Gabor .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1051-1057
[6]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[7]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[8]   Perspective: Machine learning potentials for atomistic simulations [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
[9]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
[10]   Teaching Enzyme Catalysis Using Interactive Molecular Dynamics in Virtual Reality [J].
Bennie, Simon J. ;
Ranaghan, Kara E. ;
Deeks, Helen ;
Goldsmith, Heather E. ;
O'Connor, Michael B. ;
Mulholland, Adrian J. ;
Glowacki, David R. .
JOURNAL OF CHEMICAL EDUCATION, 2019, 96 (11) :2488-+