On the Diophantine equation x2+3a41b = yn

被引:0
|
作者
Alan, Murat [1 ]
Zengin, Ugur [1 ]
机构
[1] Yildiz Tech Univ, Fac Arts & Sci, Dept Math, Davutpasa Campus, TR-34210 Istanbul, Turkey
关键词
Diophantine equations; Ramanujan-Nagell equations; Primitive divisor theorem; X(2)+2(A);
D O I
10.1007/s10998-020-00321-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we find all positive integer solutions (x, y, n, a, b) of the equation in the title for non negative integers a and b under the condition that the integers x and y are relatively prime and n >= 3.
引用
收藏
页码:284 / 291
页数:8
相关论文
共 50 条
  • [31] On the Diophantine equation F(x) = G(y)
    Tengely, S
    ACTA ARITHMETICA, 2003, 110 (02) : 185 - 200
  • [32] A note on the Diophantine equation x2 + qm=c2n
    Deng, Mou-Jie
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2015, 91 (02) : 15 - 18
  • [33] ON THE DIOPHANTINE EQUATION z2 = f(x)2 ± f(y)2, II
    He, Bo
    Togbe, Alain
    Ulas, Maciej
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (02) : 187 - 204
  • [34] Infinitely many positive solutions of the diophantine equation x2-kxy+y2+x=0
    Marlewski, A
    Zarzycki, P
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (01) : 115 - 121
  • [35] The equation (x - d)5 + x5 + (x plus d)5 = yn
    Bennett, Michael A.
    Koutsianas, Angelos
    ACTA ARITHMETICA, 2021, 198 (04) : 387 - 399
  • [36] On the Diophantine equation Gn(x) = Gm(y) withQ(x, y)=0\
    Fuchs, Clemens
    Petho, Attila
    Tich, Robert F.
    DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 : 199 - +
  • [37] On the Positive Integral Solutions of the Diophantine Equation x3 + by+1-xyz=0
    Luca, Florian
    Togbe, Alain
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2008, 31 (02) : 129 - 134
  • [38] On the Diophantine equation (x2 ± C)(y2 ± D) = z4
    Yuan, Pingzhi
    Luo, Jiagui
    ACTA ARITHMETICA, 2010, 144 (01) : 69 - 95
  • [39] On the Diophantine equation σ2(Xn) = σn(Xn)
    Miska, Piotr
    Ulas, Maciej
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (05) : 1287 - 1306
  • [40] ON THE DIOPHANTINE EQUATION y(2) = px(Ax(2) - 2)
    Yuan, Pingzhi
    Li, Yuan
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2009, 14 (02): : 185 - 190