Differential expression of genes for uncoupling proteins 1, 2 and 3 in brown and white adipose tissue depots during rat development

被引:13
作者
Oliver, P [1 ]
Picó, C [1 ]
Palou, A [1 ]
机构
[1] Univ Illes Balears, Dept Biol Fonamental & Ciencies Salut, Lab Biol Mol Nutr & Biotecnol, E-07071 Palma de Mallorca, Spain
关键词
uncoupling proteins; ageing; adipose tissue; development;
D O I
10.1007/PL00000870
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The different expression patterns of genes for uncoupling proteins (UCPs) 1, 2 and 3 (ucp1, ucp2 and ucp3) were studied in interscapular brown adipose tissue (BAT) and in four white adipose tissue (WAT) depots (epididymal, inguinal, mesenteric and retroperitoneal) in male rats of different ages (18 days-12 months). UCP mRNA expression levels were determined by Northern blotting. In BAT, there were high levels of expression of UCP1 and UCP3 mRNA, but no detectable levels of UCP2 mRNA. Both ucp1 and ucp3 followed a similar expression pattern with age, with high levels in suckling rats which decreased to 50% or less in rats just under 2 months old, declining thereafter until 5 months and then recovering with age. However, an additional peak of expression was observed for ucp3 at the age of 3 months. In WAT, ucp1 expression was rare: occasional expression was found for UCP1 mRNA in the retroperitoneal depot in suckling rats and in the epididymal and inguinal depots in suckling and mature adult rats. ucp2 and ucp3 had different developmental expression patterns, but these were similar for each gene in the different depots studied. UCP3 mRNA was highly expressed in rats soon after birth, it decreased until 3 months, and increased thereafter, except for the mesenteric WAT where ucp3 expression decreased until 7 months before recovering. The fact that changes with age of both ucp1 and ucp3 expression have a similar profile in BAT, which is also similar to the ucp3 and also ucp1 profiles in some WAT depots, might reflect a common regulatory pattern for the expression of these genes, and also a common function. In contrast to ucp1 and ucp3, ucp2 had a peak of expression at about 2 months, and lower expression at 3 months, suggesting different regulation and probably a different role for this UCP.
引用
收藏
页码:470 / 476
页数:7
相关论文
共 54 条
[1]   Uncoupling protein homologs: Emerging views of physiological function [J].
Adams, SH .
JOURNAL OF NUTRITION, 2000, 130 (04) :711-714
[2]   A NOVEL REGULATORY PATHWAY OF BROWN FAT THERMOGENESIS - RETINOIC ACID IS A TRANSCRIPTIONAL ACTIVATOR OF THE MITOCHONDRIAL UNCOUPLING PROTEIN GENE [J].
ALVAREZ, R ;
DEANDRES, J ;
YUBERO, P ;
VINAS, O ;
MAMPEL, T ;
IGLESIAS, P ;
GIRALT, M ;
VILLARROYA, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (10) :5666-5673
[3]  
BIANCO AC, 1988, J BIOL CHEM, V263, P18168
[4]   Tissue-dependent upregulation of rat uncoupling protein-2 expression in response to fasting or cold [J].
Boss, O ;
Samec, S ;
Dulloo, A ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FEBS LETTERS, 1997, 412 (01) :111-114
[5]   Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression [J].
Boss, O ;
Samec, S ;
PaoloniGiacobino, A ;
Rossier, C ;
Dulloo, A ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FEBS LETTERS, 1997, 408 (01) :39-42
[6]   Uncoupling protein-3 expression in rodent skeletal muscle is modulated by food intake but not by changes in environmental temperature [J].
Boss, O ;
Samec, S ;
Kühne, F ;
Bijlenga, P ;
Assimacopoulos-Jeannet, F ;
Seydoux, J ;
Giacobino, JP ;
Muzzin, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) :5-8
[7]   Differential regulation of uncoupling protein-2 and uncoupling protein-3 gene expression in brown adipose tissue during development and cold exposure [J].
Carmona, MC ;
Valmaseda, A ;
Brun, S ;
Viñas, O ;
Mampel, T ;
Iglesias, R ;
Giralt, M ;
Villarroya, F .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1998, 243 (01) :224-228
[8]   Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean [J].
Clapham, JC ;
Arch, JRS ;
Chapman, H ;
Haynes, A ;
Lister, C ;
Moore, GBT ;
Piercy, V ;
Carter, SA ;
Lehner, I ;
Smith, SA ;
Beeley, LJ ;
Godden, RJ ;
Herrity, N ;
Skehel, M ;
Changani, KK ;
Hockings, PD ;
Reid, DG ;
Squires, SM ;
Hatcher, J ;
Trail, B ;
Latcham, J ;
Rastan, S ;
Harper, AJ ;
Cadenas, S ;
Buckingham, JA ;
Brand, MD ;
Abuin, A .
NATURE, 2000, 406 (6794) :415-418
[9]   Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese [J].
Enerback, S ;
Jacobsson, A ;
Simpson, EM ;
Guerra, C ;
Yamashita, H ;
Harper, ME ;
Kozak, LP .
NATURE, 1997, 387 (6628) :90-94
[10]   Uncoupling protein-2: A novel gene linked to obesity and hyperinsulinemia [J].
Fleury, C ;
Neverova, M ;
Collins, S ;
Raimbault, S ;
Champigny, O ;
LeviMeyrueis, C ;
Bouillaud, F ;
Seldin, MF ;
Surwit, RS ;
Ricquier, D ;
Warden, CH .
NATURE GENETICS, 1997, 15 (03) :269-272