PRESERVATION OF THE INVARIANTS OF LOTKA-VOLTERRA EQUATIONS BY ITERATED DEFERRED CORRECTION METHODS

被引:0
作者
Uzunca, M. [1 ]
机构
[1] Sinop Univ, Fac Arts & Sci, Dept Math, TR-57000 Sinop, Turkey
来源
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS | 2021年 / 11卷 / 04期
关键词
Lotka-Volterra equations; conserved quantities; Kahan's method; iterated de-ferred correction; ORDINARY DIFFERENTIAL-EQUATIONS; HAMILTONIAN-STRUCTURE; DISCRETIZATION; ORDER; SYSTEMS; SCHEMES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply Kahan's nonstandard discretization to three dimensional Lotka-Volterra equations in bi-Hamiltonian form. The periodicity of the solutions and all polynomial and non-polynomial invariants are well preserved in long-term integration. Applying classical deferred correction method, we show that the invariants are preserved with increasing accuracy as a results of more accurate numerical solutions. Substantial speedups over the Kahan's method are achieved at each run with deferred correction method.
引用
收藏
页码:1080 / 1092
页数:13
相关论文
共 42 条
  • [1] Blanes S., 2008, Bol. Soc. Esp. Mat. Apl., V45, P89
  • [2] Algorithm 927: The MATLAB Code bvptwp.m for the Numerical Solution of Two Point Boundary Value Problems
    Cash, J. R.
    Hollevoet, D.
    Mazzia, F.
    Nagy, A. M.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2013, 39 (02):
  • [3] Discretization of polynomial vector fields by polarization
    Celledoni, Elena
    McLachlan, Robert I.
    McLaren, David I.
    Owren, Brynjulf
    Quispel, G. R. W.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2184):
  • [4] Integrability properties of Kahan's method
    Celledoni, Elena
    McLachlan, Robert I.
    McLaren, David I.
    Owren, Brynjulf
    Quispel, G. R. W.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (36)
  • [5] Geometric properties of Kahan's method
    Celledoni, Elena
    McLachlan, Robert I.
    Owren, Brynjulf
    Quispel, G. R. W.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (02)
  • [6] ENERGY-PRESERVING RUNGE-KUTTA METHODS
    Celledoni, Elena
    McLachlan, Robert I.
    McLaren, David I.
    Owren, Brynjulf
    Quispel, G. Reinout W.
    Wright, William M.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (04): : 645 - 649
  • [7] INTEGRAL DEFERRED CORRECTION METHODS CONSTRUCTED WITH HIGH ORDER RUNGE-KUTTA INTEGRATORS
    Christlieb, Andrew
    Ong, Benjamin
    Qiu, Jing-Mei
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (270) : 761 - 783
  • [8] Linear energy-preserving integrators for Poisson systems
    Cohen, David
    Hairer, Ernst
    [J]. BIT NUMERICAL MATHEMATICS, 2011, 51 (01) : 91 - 101
  • [9] Spectral deferred correction methods for ordinary differential equations
    Dutt, A
    Greengard, L
    Rokhlin, V
    [J]. BIT, 2000, 40 (02): : 241 - 266
  • [10] Poisson integrators for Volterra lattice equations
    Ergenç, T
    Karasözen, B
    [J]. APPLIED NUMERICAL MATHEMATICS, 2006, 56 (06) : 879 - 887