Asymptotic Stability of the Pexider-Cauchy Functional Equation in Non-Archimedean Spaces

被引:2
作者
Gharib, Hamid [1 ]
Moghimi, Mohammad B. [1 ]
Najati, Abbas [1 ]
Bae, Jae-Hyeong [2 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math, Fac Sci, Ardebil 5619911367, Iran
[2] Kyung Hee Univ, Humanitas Coll, Yongin 17104, South Korea
关键词
non-Archimedean space; Pexider-Cauchy equation; asymptotic stability;
D O I
10.3390/math9182197
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigated the asymptotic stability behaviour of the Pexider-Cauchy functional equation in non-Archimedean spaces. We also showed that, under some conditions, if parallel to f (x + y) - g(x) - h(y)parallel to <= epsilon, then f, g and h can be approximated by additive mapping in non-Archimedean normed spaces. Finally, we deal with a functional inequality and its asymptotic behaviour.
引用
收藏
页数:12
相关论文
共 18 条
[1]  
Aoki T., 1950, J MATH SOC JPN, V2, P64, DOI [DOI 10.2969/JMSJ/00210064, 10.2969/jmsj/00210064]
[2]  
Arriola LM, 2005, REAL ANAL EXCH, V31, P125
[3]  
Czerwik S., 2002, Functional Equations and Inequalities in Several Variables
[4]  
Forti G. L., 1995, Aequat. Math, V50, P143, DOI DOI 10.1007/BF01831117
[5]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[6]  
Hyers D.H., 1998, Stability of Functional Equations in Several Variables
[7]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[8]  
Jung SM, 2011, SPRINGER SER OPTIM A, V48, P1, DOI 10.1007/978-1-4419-9637-4
[9]  
Kannappan P, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-89492-8_1
[10]   Asymptotic aspect of Drygas, quadratic and Jensen functional equations in metric abelian groups [J].
Khosravi, B. ;
Moghimi, M. B. ;
Najati, A. .
ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) :248-265