Probing T-cell response by sequence-based probabilistic modeling

被引:7
作者
Bravi, Barbara [1 ]
Balachandran, Vinod P. [2 ]
Greenbaum, Benjamin D. [3 ]
Walczak, Aleksandra M. [1 ]
Mora, Thierry [1 ]
Monasson, Remi [1 ]
Cocco, Simona [1 ]
机构
[1] Univ Paris, Univ PSL, Sorbonne Univ, Ecole Normale Super,CNRS,Lab Phys,ENS, Paris, France
[2] Mem Sloan Kettering Canc Ctr, Dept Surg, Hepatopancreatobiliary Serv, Immunooncol Serv,Human Oncol & Pathogenesis Progr, 1275 York Ave, New York, NY 10021 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, Computat Oncol, New York, NY 10021 USA
基金
欧洲研究理事会;
关键词
CHECKPOINT BLOCKADE;
D O I
10.1371/journal.pcbi.1009297
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
With the increasing ability to use high-throughput next-generation sequencing to quantify the diversity of the human T cell receptor (TCR) repertoire, the ability to use TCR sequences to infer antigen-specificity could greatly aid potential diagnostics and therapeutics. Here, we use a machine-learning approach known as Restricted Boltzmann Machine to develop a sequence-based inference approach to identify antigen-specific TCRs. Our approach combines probabilistic models of TCR sequences with clone abundance information to extract TCR sequence motifs central to an antigen-specific response. We use this model to identify patient personalized TCR motifs that respond to individual tumor and infectious disease antigens, and to accurately discriminate specific from non-specific responses. Furthermore, the hidden structure of the model results in an interpretable representation space where TCRs responding to the same antigen cluster, correctly discriminating the response of TCR to different viral epitopes. The model can be used to identify condition specific responding TCRs. We focus on the examples of TCRs reactive to candidate neoantigens and selected epitopes in experiments of stimulated TCR clone expansion. Author summary Large repertoires of immune cells, such as T cells, are increasingly made available by high-throughput sequencing. Exploiting such datasets to infer how T-cell respond to antigens could help design vaccines and adoptive T-cell therapies. We here propose an approach based on probabilistic machine learning to identify and characterize responding T cells. After learning, this approach is able to distinguish clones that specifically respond to different antigen stimulations. The model parameters and the low-dimensional representations of the T-cell sequences identify sequence motifs underlying T-cell recognition at the molecular level. The approach is illustrated on repertoire data describing in vitro stimulation of T cells by cancer-related neoantigens, as well as on data for common infectious diseases.
引用
收藏
页数:27
相关论文
共 37 条
[1]   Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer [J].
Balachandran, Vinod P. ;
Luksza, Marta ;
Zhao, Julia N. ;
Makarov, Vladimir ;
Moral, John Alec ;
Remark, Romain ;
Herbst, Brian ;
Askan, Gokce ;
Bhanot, Umesh ;
Senbabaoglu, Yasin ;
Wells, Daniel K. ;
Cary, Charles Ian Ormsby ;
Grbovic-Huezo, Olivera ;
Attiyeh, Marc ;
Medina, Benjamin ;
Zhang, Jennifer ;
Loo, Jennifer ;
Saglimbeni, Joseph ;
Abu-Akeel, Mohsen ;
Zappasodi, Roberta ;
Riaz, Nadeem ;
Smoragiewicz, Martin ;
Kelley, Z. Larkin ;
Basturk, Olca ;
Goenen, Mithat ;
Levine, Arnold J. ;
Allen, Peter J. ;
Fearon, Douglas T. ;
Merad, Miriam ;
Gnjatic, Sacha ;
Iacobuzio-Donahue, Christine A. ;
Wolchok, Jedd D. ;
DeMatteo, Ronald P. ;
Chan, Timothy A. ;
Greenbaum, Benjamin D. ;
Merghoub, Taha ;
Leach, Steven D. .
NATURE, 2017, 551 (7681) :512-+
[2]   An Analysis of Natural T Cell Responses to Predicted Tumor Neoepitopes [J].
Bjerregaard, Anne-Mette ;
Nielsen, Morten ;
Jurtz, Vanessa ;
Barra, Carolina M. ;
Hadrup, Sine Reker ;
Szallasi, Zoltan ;
Eklund, Aron Charles .
FRONTIERS IN IMMUNOLOGY, 2017, 8
[3]   Using T Cell Receptor Repertoires to Understand the Principles of Adaptive Immune Recognition [J].
Bradley, Philip ;
Thomas, Paul G. .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 37, 2019, 2019, 37 :547-570
[4]   RBM-MHC: A Semi-Supervised Machine-Learning Method for Sample-Specific Prediction of Antigen Presentation by HLA-I Alleles [J].
Bravi, Barbara ;
Tubiana, Jerome ;
Cocco, Simona ;
Monasson, Remi ;
Mora, Thierry ;
Walczak, Aleksandra M. .
CELL SYSTEMS, 2021, 12 (02) :195-+
[5]   Sequence and Structural Analyses Reveal Distinct and Highly Diverse Human CD8+ TCR Repertoires to Immunodominant Viral Antigens [J].
Chen, Guobing ;
Yang, Xinbo ;
Ko, Annette ;
Sun, Xiaoping ;
Gao, Mingming ;
Zhang, Yongqing ;
Shi, Alvin ;
Mariuzza, Roy A. ;
Weng, Nan-Ping .
CELL REPORTS, 2017, 19 (03) :569-583
[6]   Quantifiable predictive features define epitope-specific T cell receptor repertoires [J].
Dash, Pradyot ;
Fiore-Gartland, Andrew J. ;
Hertz, Tomer ;
Wang, George C. ;
Sharma, Shalini ;
Souquette, Aisha ;
Crawford, Jeremy Chase ;
Clemens, E. Bridie ;
Nguyen, Thi H. O. ;
Kedzierska, Katherine ;
La Gruta, Nicole L. ;
Bradley, Philip ;
Thomas, Paul G. .
NATURE, 2017, 547 (7661) :89-+
[7]   Deep generative models for T cell receptor protein sequences [J].
Davidsen, Kristian ;
Olson, Branden J. ;
DeWitt, William S., III ;
Feng, Jean ;
Harkins, Elias ;
Bradley, Philip ;
Matsen, Frederick A. .
ELIFE, 2019, 8
[8]   Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity [J].
Duan, Fei ;
Duitama, Jorge ;
Al Seesi, Sahar ;
Ayres, Cory M. ;
Corcelli, Steven A. ;
Pawashe, Arpita P. ;
Blanchard, Tatiana ;
McMahon, David ;
Sidney, John ;
Sette, Alessandro ;
Baker, Brian M. ;
Mandoiu, Ion I. ;
Srivastava, Pramod K. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2014, 211 (11) :2231-2248
[9]   Adoptive-cell-transfer therapy for the treatment of patients with cancer [J].
Dudley, ME ;
Rosenberg, SA .
NATURE REVIEWS CANCER, 2003, 3 (09) :666-U2
[10]  
Durbin R., 1998, Biological sequence analysis: probabilistic models of proteins and nucleic acids