Comparison of ROS-Based Monocular Visual SLAM Methods: DSO, LDSO, ORB-SLAM2 and DynaSLAM

被引:19
作者
Mingachev, Eldar [1 ]
Lavrenov, Roman [1 ]
Tsoy, Tatyana [1 ]
Matsuno, Fumitoshi [2 ]
Svinin, Mikhail [3 ]
Suthakorn, Jackrit [4 ]
Magid, Evgeni [1 ]
机构
[1] Kazan Fed Univ, Higher Inst Informat Technol & Intelligent Syst, Intelligent Robot Dept, Lab Intelligent Robot Syst LIRS, Kazan, Russia
[2] Kyoto Univ, Dept Mech Engn & Sci, Kyoto 6158540, Japan
[3] Ritsumeikan Univ, Informat Sci & Engn Dept, 1-1-1 Noji Higashi, Kusatsu, Shiga 5258577, Japan
[4] Mahidol Univ, Biomed Engn Dept, 4 999 Phuttamonthon, Salaya 73170, Nakhon Pathom, Thailand
来源
INTERACTIVE COLLABORATIVE ROBOTICS, ICR 2020 | 2020年 / 12336卷
基金
日本科学技术振兴机构; 俄罗斯基础研究基金会;
关键词
Simultaneous localization and mapping; Visual SLAM; Monocular SLAM; Visual odometry; State estimation; Path planning; Benchmark testing; Robot sensing systems;
D O I
10.1007/978-3-030-60337-3_22
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stable and robust path planning of a ground mobile robot requires a combination of accuracy and low latency in its state estimation. Yet, state estimation algorithms should provide these under computational and power constraints of a robot embedded hardware. The presented study offers a comparative analysis of four cutting edge publicly available within robot operating system (ROS) monocular simultaneous localization and mapping methods: DSO, LDSO, ORB-SLAM2, and DynaSLAM. The analysis considers pose estimation accuracy (alignment, absolute trajectory, and relative pose root mean square error) and trajectory precision of the four methods at TUM-Mono and EuRoC datasets.
引用
收藏
页码:222 / 233
页数:12
相关论文
共 26 条
[1]   Divergent trinocular vision observers design for extended Kalman filter robot state estimation [J].
Alonso Martinez-Garcia, Edgar ;
Rivero-Juarez, Joaquin ;
Abril Torres-Mendez, Luz ;
Enrique Rodas-Osollo, Jorge .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2019, 233 (05) :524-547
[2]  
Bereznikov D, 2020, PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), P444
[3]   DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes [J].
Bescos, Berta ;
Facil, Jose M. ;
Civera, Javier ;
Neira, Jose .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04) :4076-4083
[4]   Sparse 3D Point-Cloud Map Upsampling and Noise Removal as a vSLAM Post-Processing Step: Experimental Evaluation [J].
Bokovoy, Andrey ;
Yakovlev, Konstantin .
INTERACTIVE COLLABORATIVE ROBOTICS, ICR 2018, 2018, 11097 :23-33
[5]   The EuRoC micro aerial vehicle datasets [J].
Burri, Michael ;
Nikolic, Janosch ;
Gohl, Pascal ;
Schneider, Thomas ;
Rehder, Joern ;
Omari, Sammy ;
Achtelik, Markus W. ;
Siegwart, Roland .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (10) :1157-1163
[6]   Comparative Analysis of ROS-Based Monocular SLAM Methods for Indoor Navigation [J].
Buyval, Alexander ;
Afanasyev, Ilya ;
Magid, Evgeni .
NINTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2016), 2017, 10341
[7]  
Carballo A, 2018, IEEE INT C INTELL TR, P3811, DOI 10.1109/ITSC.2018.8569764
[8]  
Delmerico J, 2018, IEEE INT CONF ROBOT, P2502
[9]   A solution to the simultaneous localization and map building (SLAM) problem [J].
Dissanayake, MWMG ;
Newman, P ;
Clark, S ;
Durrant-Whyte, HF ;
Csorba, M .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2001, 17 (03) :229-241
[10]  
Engel J., 2016, ARXIV