Randomized selection in n + C + o(n) comparisons

被引:2
作者
Gerbessiotis, AV [1 ]
Siniolakis, CJ
机构
[1] New Jersey Inst Technol, CS Dept, Newark, NJ 07102 USA
[2] Amer Coll Greece, Athens 15342, Greece
关键词
randomized algorithms; selection;
D O I
10.1016/S0020-0190(03)00361-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a randomized selection algorithm that with high probability 1 - 1/n(rho), for any constant p > 1 requires n + C + o(n) comparisons to determine the Cth order statistic of n keys thus matching a corresponding lower bound on the average number of comparisons required. Low order terms in the number of comparisons performed can also be reduced by extending the algorithm of Floyd and Rivest and analyzing its resulting performance more carefully. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 11 条
[1]   FAST PROBABILISTIC ALGORITHMS FOR HAMILTONIAN CIRCUITS AND MATCHINGS [J].
ANGLUIN, D ;
VALIANT, LG .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1979, 18 (02) :155-193
[2]  
Blum M., 1973, Journal of Computer and System Sciences, V7, P448, DOI 10.1016/S0022-0000(73)80033-9
[3]  
Bollobas B., 1984, RANDOM GRAPHS
[4]  
CUNTO W., 1984, P 16 ANN ACM S THEOR, P369
[5]   EXPECTED TIME BOUNDS FOR SELECTION [J].
FLOYD, RW ;
RIVEST, RL .
COMMUNICATIONS OF THE ACM, 1975, 18 (03) :165-172
[6]  
Gerbessiotis A. V., 1996, P 8 ACM S PAR ALG AR
[7]   DIRECT BULK-SYNCHRONOUS PARALLEL ALGORITHMS [J].
GERBESSIOTIS, AV ;
VALIANT, LG .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1994, 22 (02) :251-267
[8]   A UNIFIED LOWER BOUND FOR SELECTION AND SET PARTITIONING PROBLEMS [J].
KIRKPATRICK, DG .
JOURNAL OF THE ACM, 1981, 28 (01) :150-165
[9]  
Knuth D.E., 1969, The Art of Computer Programming. Vol. 1: Fundamental Algorithms, V1
[10]   A LOGARITHMIC TIME SORT FOR LINEAR SIZE NETWORKS [J].
REIF, JH ;
VALIANT, LG .
JOURNAL OF THE ACM, 1987, 34 (01) :60-76