Scaling up COVID-19 rapid antigen tests: promises and challenges

被引:245
作者
Peeling, Rosanna W. [1 ]
Olliaro, Piero L. [2 ]
Boeras, Debrah, I [3 ]
Fongwen, Noah [1 ]
机构
[1] London Sch Hyg & Trop Med, Dept Clin Res, London WC1E 7HT, England
[2] Univ Oxford, Nuffield Dept Med, Ctr Trop Med & Global Hlth, Oxford, England
[3] Global Hlth Impact Grp, Atlanta, GA USA
基金
英国惠康基金;
关键词
SARS-COV-2; DIAGNOSIS;
D O I
10.1016/S1473-3099(21)00048-7
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
WHO recommends a minimum of 80% sensitivity and 97% specificity for antigen-detection rapid diagnostic tests (Ag-RDTs), which can be used for patients with symptoms consistent with COVID-19. However, after the acute phase when viral load decreases, use of Ag-RDTs might lead to high rates of false negatives, suggesting that the tests should be replaced by a combination of molecular and serological tests. When the likelihood of having COVID-19 is low, such as for asymptomatic individuals in low prevalence settings, for travel, return to schools, workplaces, and mass gatherings, Ag-RDTs with high negative predictive values can be used with confidence to rule out infection. For those who test positive in low prevalence settings, the high false positive rate means that mitigation strategies, such as molecular testing to confirm positive results, are needed. Ag-RDTs, when used appropriately, are promising tools for scaling up testing and ensuring that patient management and public health measures can be implemented without delay.
引用
收藏
页码:E290 / E295
页数:6
相关论文
共 27 条
[1]  
Abate SM, 2020, Bull. World Health Organ, DOI 10.2471/BLT.20.260737
[2]  
Alemany A, J INFECT, V2021
[3]  
[Anonymous], 2020, Situation Report -1, P2020
[4]   Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility [J].
Arons, M. M. ;
Hatfield, K. M. ;
Reddy, S. C. ;
Kimball, A. ;
James, A. ;
Jacobs, J. R. ;
Taylor, J. ;
Spicer, K. ;
Bardossy, A. C. ;
Oakley, L. P. ;
Tanwar, S. ;
Dyal, J. W. ;
Harney, J. ;
Chisty, Z. ;
Bell, J. M. ;
Methner, M. ;
Paul, P. ;
Carlson, C. M. ;
McLaughlin, H. P. ;
Thornburg, N. ;
Tong, S. ;
Tamin, A. ;
Tao, Y. ;
Uehara, A. ;
Harcourt, J. ;
Clark, S. ;
Brostrom-Smith, C. ;
Page, L. C. ;
Kay, M. ;
Lewis, J. ;
Montgomery, P. ;
Stone, N. D. ;
Clark, T. A. ;
Honein, M. A. ;
Duchin, J. S. ;
Jernigan, J. A. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (22) :2081-2090
[5]  
Beale S, 2020, medRxiv, DOI [DOI 10.12688/WELLCOMEOPENRES.16387.1, 10.1101/2020.05.20.20108183, DOI 10.1101/2020.05.20.20108183]
[6]   Predicting Infectious Severe Acute Respiratory Syndrome Coronavirus 2 From Diagnostic Samples [J].
Bullard, Jared ;
Dust, Kerry ;
Funk, Duane ;
Strong, James E. ;
Alexander, David ;
Garnett, Lauren ;
Boodman, Carl ;
Bello, Alexander ;
Hedley, Adam ;
Schiffman, Zachary ;
Doan, Kaylie ;
Bastien, Nathalie ;
Li, Yan ;
Van Caeseele, Paul G. ;
Poliquin, Guillaume .
CLINICAL INFECTIOUS DISEASES, 2020, 71 (10) :2663-2666
[7]   Prevalence of SARS-CoV-2 Among Patients Admitted for Childbirth in Southern Connecticut [J].
Campbell, Katherine H. ;
Tornatore, Jean M. ;
Lawrence, Kirsten E. ;
Illuzzi, Jessica L. ;
Sussman, L. Scott ;
Lipkind, Heather S. ;
Pettker, Christian M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (24) :2520-2522
[8]   Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan [J].
Chan, Jasper Fuk-Woo ;
Kok, Kin-Hang ;
Zhu, Zheng ;
Chu, Hin ;
To, Kelvin Kai-Wang ;
Yuan, Shuofeng ;
Yuen, Kwok-Yung .
EMERGING MICROBES & INFECTIONS, 2020, 9 (01) :221-236
[9]  
FDA-NIH Biomarker Working Group, 2020, BEST BIOM ENDP OTH T
[10]  
FIND, 2020, FIND EV SARS COV 2 A