Characteristic Length Scale during the Time Evolution of a Turbulent Bose-Einstein Condensate

被引:1
作者
Madeira, Lucas [1 ]
Garcia-Orozco, Arnol D. [1 ]
Moreno-Armijos, Michelle A. [1 ]
Alves dos Santos, Francisco Ednilson [2 ]
Bagnato, Vanderlei S. [1 ,3 ]
机构
[1] Univ Sao Paulo, Inst Fis Sao Carlos, CP 369, BR-13560970 Sao Carlos, Brazil
[2] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, Brazil
[3] Texas A&M Univ, Hagler Inst Adv Study, College Stn, TX 77843 USA
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
基金
巴西圣保罗研究基金会;
关键词
quantum turbulence; Bose-Einstein condensate; out-of-equilibrium;
D O I
10.3390/sym13101865
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum turbulence is characterized by many degrees of freedom interacting non-linearly to produce disordered states, both in space and in time. In this work, we investigate the decaying regime of quantum turbulence in a trapped Bose-Einstein condensate. We present an alternative way of exploring this phenomenon by defining and computing a characteristic length scale, which possesses relevant characteristics to study the establishment of the quantum turbulent regime. We reconstruct the three-dimensional momentum distributions with the inverse Abel transform, as we have done successfully in other works. We present our analysis with both the two- and three-dimensional momentum distributions, discussing their similarities and differences. We argue that the characteristic length allows us to intuitively visualize the time evolution of the turbulent state.</p>
引用
收藏
页数:12
相关论文
共 29 条
[1]   Three-dimensional inverse energy transfer induced by vortex reconnections [J].
Baggaley, Andrew W. ;
Barenghi, Carlo F. ;
Sergeev, Yuri A. .
PHYSICAL REVIEW E, 2014, 89 (01)
[2]   Introduction to quantum turbulence [J].
Barenghi, Carlo F. ;
Skrbek, Ladislav ;
Sreenivasan, Katepalli R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 :4647-4652
[3]  
Batchelor G.K., 1953, The theory of homogeneous turbulence
[4]   Superfluid helium - Visualization of quantized vortices [J].
Bewley, Gregory P. ;
Lathrop, Daniel P. ;
Sreenivasan, Katepalli R. .
NATURE, 2006, 441 (7093) :588-588
[5]  
Bracewell R. N., 1986, The Fourier Transform and its Applications
[6]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[7]   Intra-scales energy transfer during the evolution of turbulence in a trapped Bose-Einstein condensate [J].
Daniel Garcia-Orozco, Arnol ;
Madeira, Lucas ;
Galantucci, Luca ;
Barenghi, Carlo F. ;
Bagnato, Vanderlei S. .
EPL, 2020, 130 (04)
[8]   Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium [J].
Glidden, Jake A. P. ;
Eigen, Christoph ;
Dogra, Lena H. ;
Hilker, Timon A. ;
Smith, Robert P. ;
Hadzibabic, Zoran .
NATURE PHYSICS, 2021, 17 (04) :457-+
[9]   Emergence of Turbulence in an Oscillating Bose-Einstein Condensate [J].
Henn, E. A. L. ;
Seman, J. A. ;
Roati, G. ;
Magalhaes, K. M. F. ;
Bagnato, V. S. .
PHYSICAL REVIEW LETTERS, 2009, 103 (04)
[10]   A direct comparison of high-speed methods for the numerical Abel transform [J].
Hickstein, Daniel D. ;
Gibson, Stephen T. ;
Yurchak, Roman ;
Das, Dhrubajyoti D. ;
Ryazanov, Mikhail .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (06)