A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence

被引:176
作者
Hill, W. D. [1 ,2 ]
Marioni, R. E. [1 ,2 ,3 ]
Maghzian, O. [4 ]
Ritchie, S. J. [1 ,2 ]
Hagenaars, S. P. [1 ,5 ]
McIntosh, A. M. [1 ,6 ]
Gale, C. R. [1 ,2 ,7 ]
Davies, G. [1 ,2 ]
Deary, I. J. [1 ,2 ]
机构
[1] Univ Edinburgh, Ctr Cognit Ageing & Cognit Epidemiol, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Dept Psychol, Edinburgh, Midlothian, Scotland
[3] Univ Queensland, Queensland Brain Inst, Brisbane, Qld 4072, Australia
[4] Harvard Univ, Dept Econ, Littauer Ctr, 1805 Cambridge St, Cambridge, MA 02138 USA
[5] Kings Coll London, MRC Social Genet & Dev Psychiat Ctr, Inst Psychiat, London SE5 8AF, England
[6] Univ Edinburgh, Div Psychiat, Edinburgh EH8 9YL, Midlothian, Scotland
[7] Univ Southampton, MRC Lifecourse Epidemiol Unit, Southampton, Hants, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
GENOME-WIDE ASSOCIATION; ADULT HIPPOCAMPAL NEUROGENESIS; GENERAL COGNITIVE FUNCTION; WHITE-MATTER; HERITABILITY; METAANALYSIS; ANNOTATION; DISCOVERY; GWAS; SET;
D O I
10.1038/s41380-017-0001-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intelligence, or general cognitive function, is phenotypically and genetically correlated with many traits, including a wide range of physical, and mental health variables. Education is strongly genetically correlated with intelligence (r(g) = 0.70). We used these findings as foundations for our use of a novel approach-multi-trait analysis of genome-wide association studies (MTAG; Turley et al. 2017)-to combine two large genome-wide association studies (GWASs) of education and intelligence, increasing statistical power and resulting in the largest GWAS of intelligence yet reported. Our study had four goals: first, to facilitate the discovery of new genetic loci associated with intelligence; second, to add to our understanding of the biology of intelligence differences; third, to examine whether combining genetically correlated traits in this way produces results consistent with the primary phenotype of intelligence; and, finally, to test how well this new meta-analytic data sample on intelligence predicts phenotypic intelligence in an independent sample. By combining datasets using MTAG, our functional sample size increased from 199,242 participants to 248,482. We found 187 independent loci associated with intelligence, implicating 538 genes, using both SNP-based and gene-based GWAS. We found evidence that neurogenesis and myelination-as well as genes expressed in the synapse, and those involved in the regulation of the nervous system-may explain some of the biological differences in intelligence. The results of our combined analysis demonstrated the same pattern of genetic correlations as those from previous GWASs of intelligence, providing support for the meta-analysis of these genetically-related phenotypes.
引用
收藏
页码:169 / 181
页数:13
相关论文
共 61 条
  • [1] [Anonymous], NAT GENET
  • [2] [Anonymous], 2017, BIORXIV
  • [3] [Anonymous], 2017, BIORXIV, DOI DOI 10.1101/118810
  • [4] [Anonymous], 2017, BIORXIV
  • [5] [Anonymous], 2012, NATURE, V467, P1061
  • [6] [Anonymous], PSYCHOL SCI PUBL INT
  • [7] [Anonymous], 2012, NATURE, DOI DOI 10.1038/nature11632
  • [8] The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans
    Ardlie, Kristin G.
    DeLuca, David S.
    Segre, Ayellet V.
    Sullivan, Timothy J.
    Young, Taylor R.
    Gelfand, Ellen T.
    Trowbridge, Casandra A.
    Maller, Julian B.
    Tukiainen, Taru
    Lek, Monkol
    Ward, Lucas D.
    Kheradpour, Pouya
    Iriarte, Benjamin
    Meng, Yan
    Palmer, Cameron D.
    Esko, Tonu
    Winckler, Wendy
    Hirschhorn, Joel N.
    Kellis, Manolis
    MacArthur, Daniel G.
    Getz, Gad
    Shabalin, Andrey A.
    Li, Gen
    Zhou, Yi-Hui
    Nobel, Andrew B.
    Rusyn, Ivan
    Wright, Fred A.
    Lappalainen, Tuuli
    Ferreira, Pedro G.
    Ongen, Halit
    Rivas, Manuel A.
    Battle, Alexis
    Mostafavi, Sara
    Monlong, Jean
    Sammeth, Michael
    Mele, Marta
    Reverter, Ferran
    Goldmann, Jakob M.
    Koller, Daphne
    Guigo, Roderic
    McCarthy, Mark I.
    Dermitzakis, Emmanouil T.
    Gamazon, Eric R.
    Im, Hae Kyung
    Konkashbaev, Anuar
    Nicolae, Dan L.
    Cox, Nancy J.
    Flutre, Timothee
    Wen, Xiaoquan
    Stephens, Matthew
    [J]. SCIENCE, 2015, 348 (6235) : 648 - 660
  • [9] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [10] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300